219 research outputs found
On Resource-bounded versions of the van Lambalgen theorem
The van Lambalgen theorem is a surprising result in algorithmic information
theory concerning the symmetry of relative randomness. It establishes that for
any pair of infinite sequences and , is Martin-L\"of random and
is Martin-L\"of random relative to if and only if the interleaved sequence
is Martin-L\"of random. This implies that is relative random
to if and only if is random relative to \cite{vanLambalgen},
\cite{Nies09}, \cite{HirschfeldtBook}. This paper studies the validity of this
phenomenon for different notions of time-bounded relative randomness.
We prove the classical van Lambalgen theorem using martingales and Kolmogorov
compressibility. We establish the failure of relative randomness in these
settings, for both time-bounded martingales and time-bounded Kolmogorov
complexity. We adapt our classical proofs when applicable to the time-bounded
setting, and construct counterexamples when they fail. The mode of failure of
the theorem may depend on the notion of time-bounded randomness
Reasoning in non-probabilistic uncertainty: logic programming and neural-symbolic computing as examples
This article aims to achieve two goals: to show that probability is not the only way of dealing with uncertainty (and even more, that there are kinds of uncertainty which are for principled reasons not addressable with probabilistic means); and to provide evidence that logic-based methods can well support reasoning with uncertainty. For the latter claim, two paradigmatic examples are presented: Logic Programming with Kleene semantics for modelling reasoning from information in a discourse, to an interpretation of the state of affairs of the intended model, and a neural-symbolic implementation of Input/Output logic for dealing with uncertainty in dynamic normative context
- …