

City, University of London Institutional Repository

Citation: Besold, T. R., Garcez, A.D, Stenning, K., van der Torre, L. & van Lambalgen, M.
(2017). Reasoning in non-probabilistic uncertainty: logic programming and neural-symbolic
computing as examples. Minds and Machines, 27(1), doi: 10.1007/s11023-017-9428-3

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: http://openaccess.city.ac.uk/18646/

Link to published version: http://dx.doi.org/10.1007/s11023-017-9428-3

Copyright and reuse: City Research Online aims to make research
outputs of City, University of London available to a wider audience.
Copyright and Moral Rights remain with the author(s) and/or copyright
holders. URLs from City Research Online may be freely distributed and
linked to.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/141438886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Reasoning in Non-Probabilistic Uncertainty?

Logic Programming and Neural-Symbolic Computing as
Examples

Tarek R. Besold1, Artur d’Avila Garcez2, Keith Stenning3, Leendert van der
Torre4, and Michiel van Lambalgen5

1 Digital Media Lab, Center for Computing and Communication Technologies (TZI),
University of Bremen

Tarek.Besold@uni-bremen.de
2 Dept. of Computer Science, City University London

a.garcez@city.ac.uk
3 School of Informatics, University of Edinburgh

k.stenning@ed.ac.uk
4 Computer Science and Communication Lab, University of Luxembourg

leon.vandertorre@uni.lu
5 Department of Philosophy, University of Amsterdam

M.vanLambalgen@uva.nl

Abstract. This article aims to achieve two goals: to show that proba-
bility is not the only way of dealing with uncertainty (and even more,
that there are kinds of uncertainty which are for principled reasons not
addressable with probabilistic means); and to provide evidence that logic-
based methods can well support reasoning with uncertainty. For the lat-
ter claim, two paradigmatic examples are presented: Logic Programming
with Kleene semantics for modelling reasoning from information in a dis-
course, to an interpretation of the state of affairs of the intended model,
and a neural-symbolic implementation of Input/Output logic for dealing
with uncertainty in dynamic normative contexts.

1 Introduction

“Almost all everyday inference is uncertain, and, thus, human reasoning
should be assessed using probability theory, the calculus of uncertainty,
rather than logic, the calculus of certainty.” [Oaksford and Chater, 2004,
p. 308]

While fully agreeing on the premise of the statement—namely the observa-
tion that most human reasoning is uncertain in nature—we want to challenge the
conclusion Oaksford and Chater [2004] (and many others) draw from it: in our

? Forthcoming with DOI 10.1007/s11023-017-9428-3 in the Special Issue “Reasoning
with Imperfect Information and Knowledge” of Minds and Machines (2017). The
final publication will be available at http://link.springer.com.

ar
X

iv
:1

70
1.

05
22

6v
2

 [
cs

.A
I]

 1
 M

ar
 2

01
7

http://link.springer.com

2

view probability theory is neither the perfect solution solving all challenges in-
troduced by reasoning’s inherent uncertainty, nor should logic be overly casually
discarded as exclusively fit to deal with reasoning in certainty. In fact, the concep-
tion of monotonic classical logic as ‘reasoning in certainty’ can be misleading.
In order to substantiate these two claims, below we first illustrate how Logic
Programming (LP)—as a logic-based reasoning and computation paradigm—
can be used to model reasoning which involves the resolution of uncertainties
of a kind not amenable to probability theory. This is followed by the presenta-
tion of a neural-symbolic approach to LP extended to implement Makinson and
van der Torre [2000]’s Input/Output (I/O) logic, which can similarly be used to
model non-probabilistic uncertainty in normative reasoning; uncertainty which
is compounded by changing or newly added norms (i.e. dynamic environments
requiring machine learning).

Among the main foundations of our argument is the observation that there
are several qualitatively different kinds of uncertainty, for some of which probability—
as convincingly shown by Oaksford and Chater [2004]—can be a powerful mod-
elling technique, while others clearly lie outside of the reach of probabilistic
approaches. The need for distinguishing kinds of uncertainty has surfaced regu-
larly, for instance, in the study of judgement and decision-making. Knight [1921]
made an early distinction between ‘risk’ (which could be modelled in probabil-
ity) and ‘uncertainty’ (which could not), in economics. Kahneman and Tversky
[1982] already discussed several variants of uncertainty, distinguishing, for ex-
ample, what we might call private uncertainty (“How sure am I that Rome is
south of New York?” where the truth is taken to be already known by others)
from communal uncertainty (“How likely is it at the time of writing that the
euro will collapse?”). More recently, [Bradley and Drechsler, 2014, page 1225]
proposed a taxonomy of uncertainties, in which:

“[. . .] ethical, option and state space uncertainty are distinct from state
uncertainty, the empirical uncertainty that is typically measured by a
probability function on states of the world.”

This comes with the claim that a single probability function cannot provide an
adequate simultaneous account.6 Mousavi and Gigerenzer [2014] expand Knight’s
distinctions adding a further type of ‘utter uncertainty’ which describes cases
where models are used in new domains.

One way of making the existence of a range of kinds of uncertainty distinct
from probability generally plausible, is to think in terms of what a probabilis-
tic model has to specify—and then consider what happens when elements are
unavailable. Probabilistic models have to specify an algebra of propositions (vari-
ables) which exhaust the ‘effects’ encompassed by the model. Structural relations
of dependence and independence then have to be supplied or assumed. Distribu-
tional information has to be attached; and last but not least, an assumption of

6 However, these authors—somewhat paradoxically—in the end come to the view that
whatever uncertainty is the topic, probability is the framework for modelling it; cf.
Section 2.2 for some considerations on the corresponding argument and conclusion.

3

‘stationarity’ has to be made, i.e. the probabilistic relations between the isolated
algebra of propositions have to be assumed to remain constant, and without
intrusion of extraneous influences.

Several example phenomena that make this probabilistic schema impossible
or unfruitful to apply will recurr throughout this paper: LP modelling of the
interpretation of discourse (Section 2); learning (Section 3.5) which contributes
various ‘nonstationarities’ to reasoning systems; motivational phenomena which
include both the norms expressed in deontic concepts such as priorities, obliga-
tions, permissions, contrary to duties (CTDs) (Section 3.2), but also motivational
ones such as goals and values. All these various examples share the requirement
for the flexible handling of dynamic contexts, with the ensuing robustness to
exceptions, as we illustrate.

Discourses are connected language. The process starts with input of discourse
sentences, and sequentially builds a unique minimal ‘preferred’ model at each
step.7 The algebra of propositions grows at each step, and when examined care-
fully, the propositions already in the model change—if only by taking on tem-
poral/causal relations to the new ones that arrived [van Lambalgen and Hamm,
2004]—even when they are not dropped nonmonotonically. The structural ‘com-
mon core’ of the last LP model in this sequence can provide, for instance, the
basis for creating a Bayes Net by adding distributional information [Pearl, 2000,
Pinosio, in prep.]. Still, the propositions had not been identifiable until now, and
so, no distributions could be attached, nor judgments made about causal sta-
tionarity. Reasoning to this point cannot be probabilistic; and even at this point,
it is not entirely clear whether or how the necessary distributional information
is available in general. And this is just the beginning of the difficulties since,
for example, LP can freely express intentional relations between acts and actors’
multiple goals [Varga, 2013], which can at best be inflexibly ‘operationalised’ in
extensional systems. Extensional systems may be able to formulate propositions
that, when they become true, indicate that a goal has been fulfilled. However,
they cannot capture what goals are: namely, the abstract flexibility of systems
of motivational states and their interactions in unpredictable environments, as
we shall see.

It is worth noting that the recent success of probabilistic language models
based on neural networks [Weston et al., 2014, Graves et al., 2013] is orthog-
onal to the arguments presented in this paper. Yet, within the area of neural-
symbolic computing [Garcez et al., 2009], equivalences have been proved between
LP and neural networks, which indicate the possibility of reconciling such ap-
parently very distinct representational frameworks. In fact, later in this paper a
(non-probabilistic) neural characterisation of LP will be proposed which seeks to
combine the requirements identified here of three-valued semantics and spreading
of activation (discussed in what follows) with an ability to learn from examples,

7 Later, we shall consider an alternative LP semantics based on Answer Sets [Gelfond
and Lifschitz, 1991], but we choose Preferred Model Semantics [Shoham, 1987] for
now because the uniqueness of preferred models is a crucial feature for cognitive
processes such as discourse processing.

4

which is also a requirement of discourse processing in the case of dynamic en-
vironments. This neural-symbolic approach will be applied to deontic attitudes
which preclude probability, since they are motivational in the extended notion
of the word used in this paper: an obligation establishes a goal, even if that goal
gets overriden by dynamic changes in circumstance. This will be exemplified in
the context of reasoning in uncertainty about an environment of changing norms,
which might themselves evolve in many as yet indeterminate ways.

At this point we take a step back and include what might seem like a mere
clarification of terminology, but goes in fact much beyond that: the sense of
‘extensional’ and ‘intensional’ we use here are from the psychological decision
making literature—stemming from Tversky and Kahneman [1983]—in which
probability is extensional because its predicates are defined as sets, even though
its conditional is non-truthfunctional. In that literature, ‘intensional’ is often
synonymous with ‘informal’ as it lacks a suitable logic. Nonetheless, LP (with
the semantics as specified by Stenning and van Lambalgen [2008]) is intensional
in the general philosophical sense: its predicates are defined in terms of ‘senses’
which are cashed out as algorithms (completion), and its closed-world reasoning
conditionals are ‘licences for inference’ (roughly contentful inference rules) rather
than compound propositions (cf. Section 2 for an introduction). An example of
the role this interpretation of the intensional/extensional distinction plays, is the
famous ‘Conjunction Fallacy’ [Tversky and Kahneman, 1983] which is supposed
to be about judgements of the relative sizes of sets of cases corresponding to
predicates and their conjunctions in probability. If a reader’s interpretation is in
LP, then this extensional distinction makes no sense. The distinctions required
for differentiating qualitatively different kinds of uncertainty can be seen more
clearly in the contrast in the semantics of the intensional and extensional sys-
tems we discuss below. Stenning et al. [2017] use the Linda Task (the origin of
the supposed Conjunction Fallacy) to illustrate this intensional option for inter-
pretation, and its consequences. In the large, we believe these contrasts between
intensional and extensional systems are at the heart of the contrasts in kinds of
uncertainty which are our focus.

All these issues concerning the variety of kinds of uncertainty, and the char-
acteristics of different formalisms and representation systems, also resound in
the many different types of uncertainty Artificial Intelligence (AI) has to deal
with in realistic scenarios: the world might only be partially observable, obser-
vation data might be noisy, the actual outcome of actions might be different
from the theoretically assumed one (either due to previously unknown or un-
considered factors, or due to independent external influences), or a prediction
and assessment of present and future world states, action outcomes, etc. might
just practically be outright impossible due to the immense complexity of the
environment and scenario. As can be expected, there is an accordingly large AI
literature on reasoning in uncertainty, and the variety of systems other than
probability which are available. Quite recently Kern-Isberner and Lukasiewicz
[2017] provided a helpful brief map of approaches to uncertainty—which, among
others, demarcates logic programming under answer set semantics as distinc-

5

tively outside both the currently popular system P [Kraus et al., 1990] and the
AGM axioms [Alchourrón et al., 1985]. Another aid to navigation is offered by
Halpern [2005] who is concerned with distinguishing different representations of
uncertainty, and then studying reasoning from those representations. The ex-
ample problems he gives in Chapter 1, pages 1 to 4, all have the property that
the domain of interpretation and the properties and relations defined thereon
are fixed at the outset. This need to fix interpretation is imposed by classical
logic and probability, because of their need to generalise about all assignments
of values to the vocabulary. Only the sampling, and with it the epistemic states
of the judges of uncertainties, varies. For such problems, Halpern argues con-
vincingly that plausibility measures are a generalisation of probability measures,
and that different plausibility measures are more or less appropriate for different
problems.8 But contrary to this general line of investigation, our focus is on the
more radical kind of uncertainty faced by reasoning to interpretations.

Our paper thus has a much more modest exploratory goal than Halpern’s
monumental work. It seeks to develop two examples in some detail of reason-
ing to interpretations. So by definition, in these examples, much less is known
about the particularities of their domains until their specification is finished,
and it is the uncertainty during this process of reasoning which is our focus. A
great deal of general knowledge must be applied in the dynamic development
of their specification during the period of interpretation whose uncertainties are
of interest. The example of narrative discourse interpretation exemplifies this
character: At the outset of a story, the hearer may know nothing in particular
of what will turn out to be in the preferred model of the story that will develop;
not even what range of properties and relations will distinguish the characters
and events that unfold, even though the hearer’s knowledge base must con-
tain a great deal of general knowledge, some of which has to be mobilised to
interpret the current input discourse. We nevertheless succeed in reasoning to
interpretations of such stories with remarkable, though not inevitable, success.
This reasoning is omnipresent in human problem solving and communication
[Stenning and van Lambalgen, 2008]. It has to be a precursor to modelling in
probability, or plausibility measures more generally, because the vocabulary of
predicates and relations has to be established by reasoning to interpretations.
Modelling this reasoning to interpretations requires a framework that is more
radically nonmonotonic than probability theory, whose underlying propositions
to which probabilities are attached, are classical logical propositions. Stenning
et al. [2017] argue that such extensional systems are inherently incapable of pro-
viding the requisite flexibility. Understanding how reasoning to interpretations
works with reasoning from them can lead to a deeper understanding of both.

Still at this synoptic level, another difference between Halpern’s plausibility
measures and LP doing discourse interpretation is that the former begin with
numerical parameters on propositions, and output numerical parameters on in-
ferred propositions. In contrast, LP reasoning to interpretations of discourse

8 In terms of concrete examples, the work by Nilsson [1986] comes to mind as a promi-
nent instance falling within the domain of Halpern’s plausibilty measures.

6

need have no numerical parameters, even though numerical properties of the
logical structures involved have been shown to be the basis on which reasoners
make quantitative judgments of LP conditionals’ reliability in inference [Sten-
ning et al., 2017]. Counting the defeaters for a conditional can predict confidence
in inferences from that conditional. For another example, Halpern’s conditionals
with plausibility measures treat conditionals as propositions having truth values.
In LP with Kleene semantics modeling discourse interpretation, conditionals are
not propositions (they are licences for inference), and they therefore do not it-
erate (cf. [Stenning and van Lambalgen, 2008, p. 184, footnote 9]), nor do they
become false if they do not apply because of an abnormality condition.

At a more technical level, there are a number of contrasts between LP (and
also the later discussed I/O logic) and plausibility measures [Halpern, 2005]
which adopt the KLM axioms. For example, plausibility measures apply to
systems with the ‘OR-rule’. From p → q, r → q it follows that (p ∨ r) → q.
This rule does not apply in LP because the ‘abnormality clauses’ defeat it:
p ∧ ¬ab′ → q, r ∧ ¬ab′′ → q it does not follow that (p ∨ r)→ q.

We close this differentiation of our focus from existing work with an example
of a more empirical dissatisfaction with probability as a model of human rea-
soning. Tversky and Kahneman [1974] and Gigerenzer et al. [1999, 2011] have
extensively developed evidence that human reasoning is heuristic with regard
to probability models. In an especially clear case of this relation, Juslin et al.
[2009] argue that peoples’ judgements of likelihoods in uncertainty do not obey
probabilistic models. However, their concern is with heuristic approximations for
combinations of probabilities. They assume that people have access to the prob-
abilities (or their estimates), and produce evidence that people combine them in
the conjunctive case by ‘weighting and adding’, rather than the probabilistically
normative procedure of multiplying. This is a different, calculative level of issue
with probability than the conceptual differences that concern us here. These au-
thors tiptoe towards the cliff of appreciation that probability might not be the
right normative theory:

“Importantly in this context, to the extent that problems are framed
in terms of probability that often requires multiplicative information
integration, the strong inclination for linear additive integration is a
first sense in which probability theory may often not be a very useful (or
useable) guide in life.” [Juslin et al., 2009, p. 861]

Nonetheless, they do not take the leap of offering an intensional framework.
Stenning et al. [2017] explore an incorporation of such heuristic approaches
within LP to provide a simple probability-free model of judgement and decision.
This approach offers insights into how intensional reasoning produces structural
foundations for subsequent probabilistic modelling through their ‘common core’
[Pinosio, in prep.]. This functional relation of the two contrasting types of reason-
ing in uncertainty is of central importance in human reasoning, and is possibly
one of its main ingredients which is least represented in current AI.

In Section 2 we first focus on the application of LP in building process mod-
els of “reasoning to an interpretation” as a crucial part of human reasoning. As,

7

for instance, Stenning and van Lambalgen [2010] argue, when faced with inter-
pretational uncertainty about the information involved in a problem, we cannot
engage the computational complexity of probability, but have to take more ac-
cessible inferential paths—which are often quite successful. Here, among other
work building on the book by Stenning and van Lambalgen [2008], a version
of LP, using a semantics based on three-valued Kleene logics, offers itself as a
modelling approach. Since it is a crucial cognitive capacity involved in our daily
lives, as already mentioned above, discourse processing will serve as core theme
and paradigmatic example in this section.

Section 3 subsequently takes a more AI-centric view and describes a neural-
symbolic architecture combining the I/O logic proposed by Makinson and van der
Torre [2000] with artificial neural networks (ANNs), applied to normative rea-
soning tasks involving uncertainty introduced by changing norms over time. I/O
logic seeks to analyse the sometimes subtle asymmetries between what can be
fed into, and what can be output from, other logics, wherever there are inputs
that cannot occur as outputs, or vice versa. Normative reasoning is chosen be-
cause deontic systems have to encode obligations and permissions which will be
manipulated as propositions by the ‘inner logic’, but whose force is not entirely
captured by such manipulation. For example, consider ‘cottage regulations’ often
discussed in deontic logic. When the input says that there is a dog, and the out-
put says that there should be no dog, then there is a violation (which could be
sanctioned). Alternatively, if the input says that there is no dog, and the output
says again that there should be no dog, then there is a fulfilled obligation (which
could be rewarded). Moreover, we may also have according-to-duty relations
such that the output says that there should be no fence either when the input
says there is no dog, or when the input is just a tautology; and contrary-to-duty
(CTD) relations in which case the output may say that it is obligatory that there
is a fence when the input says that there is a dog. Examples like these will be
discussed later. Simply put, the challenge of norm dynamics is to change such—
already by themselves quite complex and often highly interdependent—relations
between input and output when new information becomes available that norms
have changed. Interestingly, in neural networks, as in I/O logic, what can be
fed into and what can be output from a neural network is strictly defined, in
contrast to LP. This will be analyzed in detail. The neural part of the neural-
symbolic approach enables the required form of learning, and learning introduces
a dynamics to normative systems that also exercises I/O logic, introducing more
kinds of uncertainty differentiated from probability.

Section 4 then concludes our argument and sketches several directions for
future work.

2 Logic Programming Modelling Reasoning to an
Interpretation

In this section we focus on the applicability and advantages of an LP-based ap-
proach for modelling reasoning in interpretatively uncertain situations, i.e. sit-

8

uations in which there is uncertainty concerning the relevance or precise mean-
ing/interpretation of propositions. Section 2.1 introduces the relevant form of
LP using three-valued Kleene semantics, and conceptually motivates its use as
a modelling tool for this human reasoning. This is followed by a more focused
treatment of this type of LP applied to dealing especially with the uncertain
aspects of reasoning in Section 2.2.

2.1 Logic Programming Modelling Reasoning

LP is a formal system that has been used extensively to model reasoning in a
variety of domains, as widely separated as motor control [Shanahan, 2002], and
imitative learning [Varga, 2013]. Its employment in cognitive modelling grew
primarily out of an analysis of discourse processing, in particular of interpretation
[van Lambalgen and Hamm, 2004, Stenning and van Lambalgen, 2008, Stenning
and Varga, 2016]. People take in sentences online, in fractions of a second, and
effortlessly update their current discourse model, fully indexed for co-references
of things, times and events, and their temporal and causal relations. This may
require far-flung bits of background knowledge, retrieved from a huge knowledge
base (KB) of semantic memory composed of conditional rules understood as
licences for inference. Discourse interpretation involves constructing a preferred
or intended model9 of the context. A crucial application of LP is modelling the
efficient inferential retrieval from long-term memory of the relevant cues needed
to construct or decide on an interpretation of the state of affairs as basis for,
e.g., choosing a course of action.

Following Stenning and van Lambalgen [2008], we view reasoning to be a
two-stage process. It starts with reasoning to an interpretation (the computa-
tion or retrieval of a meaningful model of the current situation), which may be
followed by reasoning from the interpretation. In a typical (i.e. cooperative) con-
versational context this amounts to computing the model the speaker must have
intended to convey. The computation of the intended or preferred model by LP
complies with cooperative Gricean principles, but is much more efficient than
computing directly with those principles. Imagine you are talking to a friend
who is telling you her holiday stories, including an outing into the countryside
by car. She says: “And then I press the brake! And then . . .”. LP is constructed so
that it interprets this utterance online under the assumption that the speaker’s
goal is to provide everything the hearer needs to know and nothing more, in
order to construct a minimal model of the discourse at each point. At this point
that model predicts a continuation of the story consistent with the car slowing
down, though this may well be retracted at the next point. It does not con-
sider, without positive evidence, that there might have been ice on the road, or
that hers functions differently from all other cars, (or any other defeater). LP

9 Intended model is the psychological notion which corresponds to minimal model.
Model is to be read as semantic model. Preferred model is the logical notion used
by Shoham [1987]. Keeping in mind the terms belonging to different fields, we use
intended, minimal and preferred as synonyms.

9

with negation-as-failure and Kleene’s strong semantics has shown to be a good
candidate for a suitable logic of such cooperative intensional reasoning.

LP conditionals function as ‘licenses for inference’, rather than sentences
compounded by the ‘if . . . then’ connective. They can be thought of as highly
content-specialised rules of inference which are always applicable when a clause
matches them. But it has the important consequence, already mentioned, that—
like natural language conditionals—LP conditionals do not iterate, especially in
the antecedent, to produce compound propositions, and do not themselves have
truth-values: they are assumed applicable on an occasion unless evidence of
exception arises. LP as discussed by Stenning and van Lambalgen [2008] and van
Lambalgen and Hamm [2004] formalises a kind of reasoning which uses closed-
world assumptions (CWAs) in order to keep the scope of reasoning to manageable
dimensions by entities with limited time, storage, and computational resources,
though with very large knowledge bases (KBs)—such as we are. Historically,
LP is a computational logic designed and developed for automated planning
[Kowalski, 1988, Doets, 1994] which is intrinsically preoccupied with relevance—
making for an important qualitative difference between LP and classical logic
(CL). Returning to the type of communicative situation as just introduced in the
car example, discourse processing in LP is cyclical. When a new input sentence
arrives, its terms are searched for in the KB. The existing minimal model of
the discourse to this point is then updated with any new relevant information,
according to CWAs, and the cycle repeats. CL, in contrast, assesses the validity
of inferences from premises to conclusions with respect to all possible models
of the premises, so the question of relevance does not even arise in CL, except
outside the logic in the framing of problems. So LP is not just a poor man’s
way of doing what can be done better but with more difficulty in CL—the two
different types of logic simply serve different incompatible reasoning purposes,
and in this sense are incommensurable.

The basic format of CWAs is the one for reasoning about abnormalities
(CWAab), which prescribes that, if there is no positive information that a certain
abnormality-event must occur, it is assumed not to occur.10 These abnormalities
are with respect to the regularity expressed by a conditional; for example, ice
on the road causing a car not to stop although the brake is pressed, is an abnor-
mality with respect to the default functioning of brakes. Potential abnormalities
are included in the LP meaning of the conditional →, hence what is labeled
‘counterexample’ in CL does not invalidate a conditional inference in LP, it is
merely treated as an exception. The conditional has an operational semantics

10 Abnormality is a technical term for exceptions and should not be taken as having any
other overtones. Some terminology: in the conditional p∧¬ab→ q, ab is the schematic
abnormality clause. A distinct ab is indexed to each conditional, and stands for a
disjunction of a list of defeaters for that conditional; CWAab is the CWA applied to
abnormality clauses; ¬ is the 3-valued Kleene connective, whereas negation-as-failure
is an inference pattern that results in negative conclusions by CWA reasoning from
absence of positive evidence; falsum (⊥) and verum (>) are proposition symbols
which always take the values false or true respectively; turnstile (`) and semantic
turnstile (|=) are symbols indicating syntactic and semantic consequence respectively.

10

as an operator that modifies truth values of atomic formulas. This is the logical
mark of its use as an exception-tolerant ‘licence for inference’. It is represented
as p ∧ ¬ab→ q; it reads as ‘If p and nothing abnormal is the case, then q’. The
antecedent p is called the body of the clause, and the consequent q is its head.11 p
and q are composed of atomic formulas, with q restricted to literals (atomic for-
mulas or their negations) and p to conjunctions of literals. The only connectives
that may occur in the antecedent are ∧ and ¬.

Sets of such conditional clauses constitute a general logic program P (i.e.
a program allowing negation in the antecedents of clauses). P can be under-
stood as a recipe for computing a unique model of the discourse it represents,
on the basis of information from background knowledge inferentially selected as
relevant. Negation in the antecedent requires utilisation of a three-valued seman-
tics.12 We opt for strong Kleene semantics for LP, where the middle truth value u
means ‘currently indeterminate’; it is not a graded truth akin to a probability—
as in Lukasiewicz three-valued logic—but rather a stage of computation of an
algorithm which can evolve towards either 0 or 1. This gives LP the sort of
semantic mobility which constitutes a crucial reason for claiming that it can
capture the particular kind of nonmonotonic flexibility of reasoning required to
deal efficiently with interpretational uncertainty (cf. Section 2.2). Facts q can
be represented in logic programs as consequents of tautologies, > → q (for sim-
plicity we write only q). The CWAab requires that for an initial interpretation
at least, abnormalities are left ‘at the back of the reasoners’ minds’, i.e. outside
of the minimal model of P. However conditional clauses have conjoined abnor-
mality conditions of the kind r1 → ab1, . . . rn → abn; when evidence of r1, . . . rn
becomes available, it activates the correspondent abk. If we take P = {If the
brake is pressed, the car will slow down}, the fact ‘there is ice on the road’ is
not represented in its minimal model because this model disregards all potential
abnormalities without explicit evidence. The information in a minimal model
includes all that is currently known to be relevant and nothing more than that;
the only relevant information is explicitly mentioned or derivable. The deriva-
tion capacities of LP’s search of its KB are what achieves this computation of
relevance. If new input is that there was a storm last night, then this, together
with other information in the KB about local meteorology, may yield an infer-
ence that there is ice on the road. The input does not mention ice, but ice on the
road is a relevant defeater for braking causing slowing, that we assume is already
in the list of defeaters for the brakes conditional. Of course, the new information
will lead to many other potential inferences during the sweep through the KB,
but if they do not connect with anything in the current model, these inferences
will not be added because there is no evidence of their relevance. Sometimes

11 Another remark concerning terminology: while in this context the use of the terms
‘head’ and ‘body’ is commonplace in computer science, we will in the following
restrict ourselves to ‘antecedent’ and ‘consequent’ in order to maintain homogeneity
also with terminology in philosophy and logic.

12 Cf. [Stenning and van Lambalgen, 2008, chapter 2] for the justification, or the Ap-
pendix in [Stenning et al., 2017] for a more succinct version.

11

such retrieval can involve several conditional links. This is a computationally
explicit example of what psychology knows as ‘spreading activation’ models of
memory retrieval, but has been neurally implemented for ‘propositional LP’ as
described in [Stenning and van Lambalgen, 2008, chapter 8]. Spreading of activa-
tion will also be given a slightly different implementation in the neural networks
used later in this paper. Such networks will adopt an answer set semantics [Gel-
fond and Lifschitz, 1991] allowing the use of default negation for implementing
CWA explicitly, and classical (sometimes called explicit) negation, which allows
for reasoning as intended here, that is, in the absence of a proof of A and its
negation, the truth-value of A is ‘currently indeterminate’.

LP models embody much information about stereotypes. For a micro exam-
ple, it is part of the stereotype of our braking scenario, that the car that is con-
jured is in motion when the brake is pressed, as developed below. Minimal models
are at the intersection between the current input (be that heard language, or
observations of any other form) and the reasoner’s background knowledge; they
contain all the relevant information and nothing more. In logical terms, they are
constructed using the two-step rule of completion (comp):

1. take the disjunction ∨ of all antecedents p1, . . . pn with the same consequent
q in program P;

2. replace → with ↔.13

Thus, if P = {p1 → q, . . . pn → q}, comp(P) = {p1 ∨ . . . pn ↔ q}. The
minimal model of P is in fact a model of comp(P). Such a model does not
include information that is either not explicitly mentioned in P, or not derivable
from it, and in this sense it is minimal. The CWAab provides the notion of valid
inference in LP—an inference is valid if it is truth-preserving with respect to the
minimal model of the premises. The contrast with CL is noteworthy: in CL an
inference is valid if and only if the conclusion is true in all possible models of the
premises. Because of this LP turns out much less computationally complex than
CL, and therefore is a promising candidate framework for realistic performance
models of fast, implicit, or automatic reasoning (online discourse interpretation
being the paradigmatic case).14

Once a minimal model is constructed, further reasoning from that model
ensues according to the derivation rule of resolution, or the reduction of goals to
subgoals by means of backwards chaining.15 The syntactic manifestation of the
CWAab is the inferential rule of negation-as-failure, which is applied restrictively

13 Here, ↔ denotes a classical biconditional in the object language.
14 Basically, in LP queries can be answered in time linear with the length of the shortest

inferential path in the KB.
15 This direction of reasoning is from effect to cause, from goals to subgoals, or simply

backwards in time. The typical backward inferences are modus tollens (p→ q,¬q |=
¬p) and affirmation of the consequent (p → q, q |= p), initiated by the consequent.
The psychological findings that these inferences are more difficult might well be a
result of the micro-scale of the tasks being used [Sloman and Lagnado, 2015], or of
the slightly more complex form of the CWAab needed [Stenning and van Lambalgen,
2008, pp. 176–177].

12

to proposition letters which are consequents of falsum, i.e. to q occurring in
formulae like ⊥ → q. Queries or goal clauses initiate derivations.

“Operationally, one should think of a query ?q as the assumption of
the formula ¬q, the first step in proving q from P using a reductio ad
absurdum argument. In other words, one tries to show that P,¬q |= ⊥.
[. . .] one rule suffices for this, a rule which reduces a goal to subgoals.”
[van Lambalgen and Hamm, 2004, p.230]

Suppose one wants to reduce the query ?q with respect to the program
P = {p ∧ ¬ab → q,⊥ → ab}, which contains no positive information about
abnormality. Negation-as-failure allows the reduction of q to p, because ab is a
consequence of falsum.

The formal parameters of LP, e.g., the semantics based on truth in unique
minimal models, the nonmonotonic definition of validity, or the syntactic rules,
such as negation-as-failure, recommend it for applications in the modelling of
human reasoning. In the first place, individuals’ background KBs are sets of
exception-tolerant regularities. Further, LP provides a ‘direct route’ to (the rea-
soner’s beliefs about) states of the environment which ground inferences: obser-
vations can be looked at as the effects of those (beliefs about) states, represented
as literals occurring in the consequents of KB clauses. We saw above that the LP
syntactic rule of resolution amounts to stepwise backward reasoning from goals
(effects) to subgoals (causes), i.e. from queries to their causes represented in the
bodies of conditionals. This matches conceptually with the plan-like psycholog-
ical structure of reasoning strategies: starting from the goal, i.e. a particular
desired state of affairs that calls for action, one attempts to derive a behaviour
that presumably leads to that state. Similarly, when a certain state is observed,
backwards reasoning derives as its cause the (beliefs about) states which appear
in the antecedent of the clause whose consequent it is. This ‘effect to cause’ infer-
ence takes place with respect to the minimal model of P, after the operation of
completion has been performed; further, it is made under the auspices of CWAab
in the syntactic form of negation-as-failure. Therefore the (beliefs about) states
are presumably, to the best of the reasoner’s knowledge, relevant for the cur-
rent inference—they are the most plausible conditions for the observed effect to
occur.

Tying back into our overarching theme for this article, it should be noted
that LP has some close correspondences with probabilistic models. At least in
causal cases, LP produces the structural features of the models which are shared
with the structural features of causal Bayes Nets [Pearl, 2000, Pinosio, in prep.].
Nevertheless, the computational properties are highly distinct [Baggio et al.,
2016, Stenning and van Lambalgen, 2010]. Probability cannot be the basis for
what LP does in discourse processing. Discourse processing at a semantic level
requires extremely fast reasoning about novel arrangements of properties and
goals, currently unknown by the reasoner to be relevant to the discourse, in order
to identify the propositions underlying the discourse, and this without knowledge
of the distributions required for probability models. Probability has the general
computational feature that the heavy computation of critical probabilities has to

13

be done when the information defining the problem is complete (i.e. the relevant
propositions identified and refined), and this is not viable in on-line discourse
processing. Foreshadowing the discussion in the following subsection, the relevant
type of uncertainty here is uncertainty of interpretation, not uncertainty about
truth values or their probabilities. We strongly suggest that this state of affairs
is not limited to discourse processing, but continues into many of the situations
where people must interpret novel information.

2.2 The Many Logical Faces of Uncertainty, or What Logic
Programming Can Do for Reasoning

We have introduced LP modelling of discourse interpretation in some detail be-
cause it is perhaps the extreme example of reasoning to interpretation. Once
this contrast with probability models is established, it enables us to understand
its kind of uncertainty as qualitatively distinct from probability. For this we re-
sort to comparison of the logical systems that define them. In contrast to most
of the proposals of kinds of uncertainty listed in the introduction, we see the
necessary focus as on differences in the epistemic relations of the user of a logic
to the propositions expressed, rather than in the content of the propositions
themselves. To illustrate with examples of the version of LP just described, a
speaker and a hearer are modelled as cooperating for the speaker to commu-
nicate to the hearer her intended preferred model by uttering a sequence of
sentences. As is typical in cooperative action, this is a non-zero sum game. If the
hearer doesn’t get the model, then the pair have failed (blame is another matter
irrelevant here). Once this cooperative nature is captured in the semantics, it
becomes evident that there is a concomitant kind of necessity: one might call
it communicative necessity. If the speaker says ”Once upon a time there was a
cat and a dog” the hearer can conclude with certainty that the intended model
contains two distinct animals at this point. This is not certainty about the real
world (whatever that is). It is certainty about the expressed intended model,
where the relation of that model to the world is for the time being suspended.
However complex the gyrations in the continuation are that perhaps reveal that
the cat was actually mistaken for the very dog, so that the model communi-
cated then has only one animal in it, the initial proposition that there are two
animals is ‘communicatively necessary’ in this logic of interpretation. What is
certain is the interpretative facts (as long as the discourse is clear, which in turn
depends whether the speaker and hearer’s KBs are well aligned in their relevant
parts): not any existing situation in the world. Fictional examples are extreme
and therefore helpful, but in fact much of our communication starts out nearer
to this kind of process than to the construction of a state of affairs that the
hearer already knows how to anchor to the world. With ‘true’ stories, we also
do not know what is going to happen, or even who is going to turn up, until
they are done. Once the appropriate kind of necessity is grasped, it is easier
to see the kind of uncertainty that is involved. The hearer is uncertain about
what information will arrive, and what updating of the model will therefore be
required to form the propositions that will be in the final model.

14

Different disciplines over the last half century or so have contributed to a
greater understanding of the range of logical systems for treating uncertainty. To
see the importance of a qualitative classification of kinds of uncertainty, consider
CL as distinct logic also exhibiting a characteristic kind of uncertainty while
reasoning toward a proof of a conjecture.16 This is reasoning in uncertainty about
whether the conjecture is a theorem, and it cannot be measured by probability.
A proof dispels this uncertainty with a positive answer, while a counterexample
resolves it with a negative answer. For another example, deontic logic defines
reasoning in moral uncertainty toward moral necessity. Each logic has its own
kind of uncertainty. If there were no uncertainty, the entire motivation behind
reasoning would be more than questionable. Also—coming back to the remark
concerning the kinds of uncertainty treated by a logic being twinned with the
logic’s kind of necessity—the CL example can serve as prime example: CL’s
kind of necessity is truth in all models of the premisses, which is distinctively
not explicable in terms of probability.

First, a general characterisation of the problem of distinguishing kinds of un-
certainty, before returning to the example. Any kind of uncertainty is a three-way
relation between a person, their epistemic state, and a proposition. A probability
model is one kind of specification of an epistemic state, which assigns probabil-
ities to component propositions. This is not a point about the subjectivity or
otherwise of probability. However objective the probability of an event may or
may not be, it also depends on the epistemic state of the assigner—what they
know or believe that is expressed in the relevant probability model. This epis-
temic state is also objective. Epistemic agents with different knowledge and belief
about the same objective events will generally rationally assign them different
probabilities on the basis of different models. Think of the players in a card game
who know their own but only their own hand: each has a different probability
model assigning different probabilities, to say, the next card played.

If the epistemic state of an agent does not permit them to specify a prob-
ability model by identifying the propositions relevant to their epistemic state,
then their uncertainty will be of a different kind than probability. The authors
cited in Section 1 as advocating varieties of uncertainty—with the exception
of Mousavi and Gigerenzer [2014]— look to identify them through probability
models. For example, take the most elaborated classification by Bradley and
Drechsler [2014]. It starts out promisingly qualitative, as demonstrated by the
quote above. But the authors still end up with probabilities. The authors’ ar-
gument is only that they cannot be assigned a single probability function. But
they do not consider the variety of logics that are required to characterise the

16 Nota bene: This stands in harsh contrast to Oaksford and Chater [2004]’s above
quoted conventional characterisation of CL as ‘reasoning in certainty’. When this way
of conceptualising monotonic CL in contrast to nonmonotonic logics was introduced
in the mid-1970s and 1980s—for instance, in the wake of Minsky [1974]’s frames or
McCarthy [1980]’s circumscription approach— the underlying concern was not with
characterising kinds of uncertainty, but with contrasting two systems on the one
specific property of (non)monotonicity.

15

epistemic states that constitute the uncertainties. It is the characterisation of
epistemic states that requires the different logics; not particularly the nature of
the ‘output proposition’ to which the uncertainty is assigned.

Again using discourse processing as example, LP describes the sequence of
epistemic states the hearer goes through as they interpret a discourse. In this
view, LP—as candidate for a logic underlying cooperative discourse semantics—
specifies a process which takes in new information about the current context of
reasoning, and interprets it in the light of background KB of regularities into a
unique minimal model which identifies the relevant propositions. Consider the
case of a discourse-initial: “Max fell. John pushed him”. First it is crucial to see
that the discourse model we construct is more than the set of sentences. The
two sentences “Max fell” and “John pushed him” are logically unrelated, but
the model we derive (perhaps unwittingly) is extensively augmented with new
information. For example, the link attributed is causal—Max’s falling follows
John’s pushing in time, as its effect—and there is a spatial contact between
Max and John. And the model specifies that Max is not John. And so on.
This extra material is derived based on our general knowledge about human-
on-human pushings and fallings. The example is chosen because here the KB
actually induces an interpretation where the sequence of events departs from
the sequence of narration, making the reasoning more prominent. Of course, it
quickly becomes obvious that here context is everything. If Max and John were
fish in water, we would struggle to interpret, because falling in water is hard for a
fish, and not the typical result of pushing. If, on the other hand, the next clause
were to be a continuation of the second sentence: “[. . .], or what was left of him
after hitting the ground, over the cliff.”, we would have to revise the model in the
light of the new information. Now, the pushing is subsequent to the falling (whose
causation is unknown), and there is a cliff in the model, near to the protagonists.
The uncertainty resides in the fact that we do not know what information is going
to be involved; and this information is not available until we have integrated
the current input and our background knowledge into the developing model,
resolving temporal, causal and referential relations, among others. We will not
present an LP formalisation here (cf. [van Lambalgen and Hamm, 2004, p. 131]):
our purpose is to point to the omnipresence of such inference, and the richness
of the general knowledge that has to be found and applied, generally at speed,
and without awareness. Electrophysiological observations on analogous materials
strongly corroborate these inferences’ occurrence [Pijnacker et al., 2010].

What is also important is that—as already stated above—interpretative in-
ferences define their own kind of necessity, namely communicative necessity.
They entail nothing about how the world has to be, but they do entail what
we have to take as the speaker’s intended model of her discourse. This does not
mean we have to take it as truth: we may even have good reason to believe it
is part of a deliberate deception. But if we need to understand that deception,
we must first understand the intended model to see what pack of lies is being
offered, i.e. what has been communicated. The general point is that we must
construct our interlocutors’ intended models if we are to communicate.

16

But now, returning to our overarching question, how does this relate to the
types of uncertainty probability theory can and cannot cover? As we engage in
this little cliff top drama, we are uncertain at every new discourse addition what
meanings are involved. Until each new sentence has been successfully incorpo-
rated into the model we do not know which sense it expresses. But the arrival of
new propositions is just the tip of the iceberg. We also do not know its effect on
the other bits of meanings that were there before. They may have disappeared
completely, and they probably have changed, if only by the relations that are
now determined between the old and the new. In contrast, a probability model
has to be founded on a set of propositions where such relations are explicit. So
at best, our discourse could invoke a sequence of probability models, one at each
step. But there need not be any systematic relation between one and the next.
The only one likely to be of much interest as the foundation of a probability
model is the ‘final’ one (cf. Stenning and van Lambalgen [2010], Baggio et al.
[2016]). And if one wanted a probability model of this last one, then the corre-
sponding LP model provides exactly the common structural core on which the
necessary probability information would have to be hung, perhaps even provided
by estimates from the conditional frequencies available in the LP net involved
(cf. Stenning et al. [2017]). In other words, while probability theory does not
deal with the dynamics of uncertainty about interpretation, LP can serve as
a modelling approach for this crucial part of human reasoning (remember the
3-valued Kleene semantics we use for LP, in which the u truth value can evolve
during computations towards 1 or 0).

So discourse processing provides our first example of a prevalent cognitive
process which deals in uncertainties and certainties of a kind not treated by
probability. And LP provides an alternative logic for this examples’ analysis.

3 Neural-Symbolic Computing Modelling Dynamic
Normative Contexts

Following our presentation of LP as a promising approach to modelling reasoning
to an interpretation (and resolving the associated communicative uncertainty),
in this section—building upon and expanding the ideas from Section 2 concep-
tually as well as formally—we focus on normative reasoning and the associated
form of uncertainty resulting from dynamic changes or expansions of norms.
Regarding aspects of uncertainty, norms and norm-based reasoning pose several
challenges: among others they tend to be highly sensitive to the context the rea-
soner finds herself in and her interpretation thereof (e.g., when deciding which
norms apply, or—if several options could be chosen from—which would be pre-
ferred options, either due to the resulting actions or to abstract value-related
considerations), and usually are subject to change over time (e.g., when existing
norms are altered in content or interpretation, or new norms are introduced).
These properties establish a natural connection to the virtues of LP-based mod-
els of reasoning described above: LP’s construction of preferred models can be
seen as construction of contexts. Still, while in the previous section we were

17

mostly focused on the application of LP in modelling human reasoning, we now
shift emphasis to a more AI-based perspective, considering reasoning in intelli-
gent agents in general. In artificial social systems, norms serve as mechanisms
to effectively deal with coordination in multi-agent systems (MAS). Among the
open problems relating to the use of norms in these systems is how to equip
agents to deal effectively with norms that change over time [Boella et al., 2009],
either due to the introduction of new norms, due to explicit changes made by
legislators to already existing norms, or due to different interpretations of the
law by judges, referees, and other judicial bodies.17

In trying to tackle the difficulties arising from the dynamic nature of norms,
we combine I/O logic [Makinson and van der Torre, 2000, 2001, 2003a] with
neural-symbolic computation [Garcez et al., 2002] in order to propose a formal
framework for reasoning and learning about norms in a dynamic environment.
I/O logic is a symbolic formalism—in several ways closely related to LP as will
become apparent below—used to represent and reason about norms, providing
reasoning mechanisms to produce outputs from the inputs, each of them bearing
a specific set of features. The neural-symbolic paradigm of Garcez et al. [2002] on
the other hand embeds symbolic logic, and in particular LP into ANNs. Neural-
symbolic systems provide translation algorithms from symbolic logic to ANNs
and vice-versa: the resulting network is used for robust learning and efficient com-
putation within a connectionist framework, while the logic provides background
knowledge to help learning, as the logic is translated into the ANN, and high-
level explanations for the network models, when the trained ANN is translated
into logic. The combination of logic and networks is achieved by representing
the I/O logic within the computational model of ANNs, leveraging a similarity
between I/O logic and ANNs: both have separate specifications of inputs and
outputs. We exploit this analogy to encode symbolic knowledge expressed as I/O
logic rules into a standard ANN, and use the resulting ANN to learn new norms
in a dynamic environment. Thus, two main steps have to be achieved, namely
the translation of I/O logic rules into ANNs, and the evaluation of the ANN
learning mechanism at refining normative rules in time.

With the exception of game-theoretic approaches (cf., e.g., Sen and Airiau
[2007], Boella and van der Torre [2006], Shoham and Tennenholtz [1997]), few
machine learning techniques have been applied to tackle open problems like re-
vising and learning new norms in open and dynamic environments. We show how
to use ANNs to cope with some of the underpinnings of normative reasoning—
namely permissions, CTDs and exceptions—by using the concept of priorities
between I/O (or LP) rules, i.e. LP rules with metalevel priorities [Antoniou
et al., 1998]. Thus, the contribution here is in allowing the handling of the un-
certainty associated with norm changes by combining symbolic and sub-symbolic
representations to provide a flexible and effective methodology for learning,
normative reasoning, and specification in MAS. After a short introduction to
neural-symbolic integration and the corresponding conceptual and architectural

17 Terminology yet again: for the purpose of this article we use law, norm, rule, etc. as
synonymous.

18

paradigm in Section 3.1, I/O logic is formally introduced in Section 3.2, ex-
plaining abstract normative systems, propositional I/O logic, and the notion of
permissions in the corresponding normative framework. Section 3.3 then gives
an overview of the neural-symbolic architecture implementing I/O logic, before
Section 3.4 shows how priorities can be used to encode and regulate certain
types of normative problems. Section 3.5 then finally draws all pieces together
in presenting the resulting system for normative connectionist learning and LP.

3.1 Neural-Symbolic Systems

The main purpose of neural-symbolic integration is to bridge the gap between
symbolic and sub-symbolic representations. To this end, neural-symbolic sys-
tems bring together connectionist networks and symbolic knowledge represen-
tation and reasoning [Garcez et al., 2015]. In this way, neural-symbolic systems
seek to take advantage of the strengths of each approach whilst hopefully avoid-
ing their drawbacks. For our current purposes, we are particularly interested in
three consecutive steps: representing the norms governing a normative system
formally and soundly in an ANN, using the network to achieve efficient paral-
lel computation, and finally exploiting the instance learning capacities of ANNs
to adapt the norms in the system through learning. This should give rise to a
normative system capable of integrating reasoning and learning capacities in an
effective way. In what follows, we introduce the basic concepts of ANNs and
neural-symbolic systems used in this article, with an emphasis on an extension
of the connectionist inductive learning and logic programming (CILP) system by
Garcez et al. [2002].

An ANN is a directed graph with the following structure: a unit (or neurone)
in the graph is characterised, at time t, by its input vector Ii(t), its input potential
Ui(t), its activation state Ai(t), and its output Oi(t). The units of the network
are interconnected via a set of directed and weighted connections such that if
there is a connection from unit i to unit j then Wji ∈ R denotes the weight of
this connection. The input potential of neurone i at time t (Ui(t)) is obtained
by computing a weighted sum for neurone i such that Ui(t) =

∑
jWijIi(t) (see

Figure 1). The activation state Ai(t) of neurone i at time t—a bounded real or
integer number—is then given by the neuron’s activation function hi such that
Ai(t) = hi(Ui(t)). Typically, hi is either a linear function, a non-linear (step)
function, or a sigmoid function (e.g.: tanh(x)). In addition, θi (an extra weight
with input always fixed at 1) is known as the threshold of neurone i. We say
that neurone i is active at time t if Ai(t) > θi. Finally, the neurone’s output
value Oi(t) is given by its output function fi(Ai(t)). Usually, fi is the identity
function.

The units of an ANN can be organised in layers. A n-layer feedforward net-
work is an acyclic graph. It consists of a sequence of layers and connections
between successive layers, containing one input layer, n − 2 hidden layers, and
one output layer, where n ≥ 2. When n = 3, we say that the network is a
single hidden layer network. When each unit occurring in the i-th layer is con-

19

Wi1

Wi2

Win

Ui(t) Ai(t+ t) Oi(t+ t)

Ai(t) I1(t)

I2(t)

In(t) - i
1

Fig. 1. The neurone or processing unit.

nected to each unit occurring in the i + 1-st layer, we say that the network is
fully-connected.

A multilayer feedforward network computes a function ϕ : Rr → Rs, where
r and s are the number of units occurring, respectively, in the input and output
layers of the network. In the case of single hidden layer networks, the computa-
tion of ϕ occurs as follows: at time t1, the input vector is presented to the input
layer. At time t2, the input vector is propagated through to the hidden layer, and
the units in the hidden layer update their input potential and activation state.
At time t3, the hidden layer activation state is propagated to the output layer,
and the units in the output layer update their input potential and activation
state. At time t4, the output vector is read off the output layer. In addition,
most neural models have a learning rule, responsible for changing the weights of
the network progressively so that it learns to approximate ϕ given a number of
training examples (input vectors and their respective target output vectors).

In the case of backpropagation—probably the most commonly applied neural
learning algorithm [Rumelhart et al., 1986]—an error is calculated as the dif-
ference between the network’s actual output vector and the target vector, for
each input vector in the set of examples. This error E is then propagated back
through the network, and used to calculate the variation of the weights 4W.
This calculation is such that the weights vary according to the gradient of the
error, i.e. 4W = −η∇E, where 0 < η < 1 is called the learning rate. The pro-
cess is repeated a number of times in an attempt to minimise the error, and thus
approximate the network’s actual output to the target output, for each example.
In order to try and avoid shallow local minima in the error surface, a common
extension of the learning algorithm above takes into account, at any time t, not
only the gradient of the error function, but also the variation of the weights at
time t−1, so that4Wt = −η∇E+µ4Wt−1, where 0 < µ < 1 is called the term
of momentum. Typically, a subset of the set of examples available for training is
left out of the learning process so that it can be used for checking the network’s
generalisation ability, i.e. its ability to respond well to examples not seen during
training.

20

CILP now is a neural-symbolic system based on an ANN that integrates
inductive learning and deductive reasoning. In CILP, a translation algorithm
maps a logic program P into a single hidden layer ANN N such that N computes
the least fixed-point of P [Lloyd, 1987]. This provides a massively parallel model
for computing the stable model semantics of P [Gelfond and Lifschitz, 1988].
In addition, N can be trained with examples using a neural learning algorithm,
having P as background knowledge. The knowledge acquired by training can
then be extracted [Garcez et al., 2001], closing the learning cycle, as advocated
by Towell and Shavlik [1994].

Let us exemplify how CILP’s translation algorithm works. Each rule (rl) of
P is mapped from the input layer to the output layer of N through one neurone
(Nl) in the single hidden layer of N . Intuitively, the translation algorithm from
P to N has to implement the following conditions: (c1) the input potential of a
hidden neurone Nl can only exceed its threshold θl, activating Nl, when all the
positive antecedents of rl are assigned truth-value true while all the negative
antecedents of rl are assigned false; and (c2) the input potential of an output
neurone A can only exceed its threshold (θA), activating A, when at least one
hidden neurone Nl that is connected to A is activated.

Example 1. (CILP) Consider the logic program P = {B∧C∧ ∼ D → A,E∧F →
A,B}, where ∼ stands for LP’s negation by failure (a.k.a. default negation)
[Lloyd, 1987]. Given P, the CILP translation algorithm produces the network
N of Figure 2, setting weights (W) and thresholds (θ) in a way that conditions
(c1) and (c2) above are satisfied. Note that, if N ought to be fully-connected,
any other link (not shown in Figure 2) should receive weight zero initially. Each
input and output neurone of N is associated with an atom of P. As a result,
each input and output vector of N can be associated with an interpretation for
P. Note also that each hidden neurone Nl corresponds to a rule rl of P such that
neurone N1 will be activated if neurones B and C are activated while neurone
D is not; output neurone A will be activated if either N1 or N2 is activated;
and output neurone B will be activated if N3 is, while N3 is always activated
regardless of the input vector (i.e. B is a fact). To compute the stable models of
P, the output vector is recursively given as the next input to the network such
that N is used as a recursive network to iterate the fixed-point operator of P as
suggested by Garcez et al. [2002]. For example, output neurone B should feed
input neurone B. N will eventually converge to a stable state which is identical
to the stable model of P provided that P is an acceptable program [Apt and
Pedreschi, 1993]. For example, given any initial activation in the input layer of
Nr (i.e. the network of Figure 2 recurrently connected), it always converges to
a stable state in which neurone B is activated and all the other neurones are
not. We associate this with literal B being assigned truth-value true, while all
the other literals are assigned truth-value false, which represents the unique
fixed-point of P.

CILP thereby provides a (provably sound) translation from a symbolic repre-
sentation into an ANN that can be trained with examples as part of a knowledge

21

E

D

D

W

-W

W

C

C

B

B A

W

W
W

W

A E F

F

N1 N2 N3

W

Fig. 2. A neural network for logic program P.

evolution process, whereby the original symbolic representation is seen as back-
ground knowledge to the network. In what follows, we extend CILP to handle a
range of normative rules and prove soundness. Notice how in the standard CILP
translation, the weights of the connections linking the hidden and output layers
of the network are always positive. As will become clearer in what follows, nor-
mative rules require the use of negative weights from the hidden to the output
layer of the CILP network as well. This implements priorities in the rules [Garcez
et al., 2002] and is responsible for adding alternative paths that enable robust-
ness in the networks also. As we study such different forms of representation in
different applications, such as CTD, we are interested in proving soundness, but
also in efficient computation and learning, as exemplified later in this article.

3.2 Input/Output Logic

As explained by Makinson and van der Torre [2003b], I/O logic takes its origin
in the study of conditional norms which, either in imperative or indicative form,
express obligations under some legal, moral, or practical code, goals, contin-
gency plans, advice, etc. Putting this overall notion in formal terms, Makinson
and van der Torre [2000] represent rules by ordered pairs (a, x), where the an-
tecedent a is thought of as an input, representing some condition or situation,
and the consequent x is thought of as an output, representing what the rule tells
us to be desirable, obligatory, or whatever else in that situation.

Concerning the overall motivation behind the development of I/O logic, in
philosophy—but also significant in our current context—norms are commonly
distinguished from declarative statements. The latter may bear truth-values,
while describing norms as true or false is meaningless. Instead, norms may be
respected (or not), can be in force in the current context (or not), or can be as-
sessed from the standpoint of other norms (e.g., when judging a law from a moral
point of view). Still, much work addressing deontic formalisms in the study of

22

logic and AI seem to ignore this distinction: most presentations of deontic logic—
whether axiomatic or semantic—treat norms as if they could be subjected to an
assessment in terms of truth-values. In particular, the truth-functional connec-
tives ‘and’, ‘or’, and ‘not’ are routinely applied to norms, forming compound
norms out of elementary ones. Semantic constructions using possible worlds go
further by offering rules to determine, in a model, the truth-value of a norm.
I/O logic has its source in precisely this tension between philosophy and stud-
ies in formal logic (the reader may identify a similar tension between human
reasoning and formal classical logic, as discussed earlier in the case of discourse
processing).

In the following, we first present abstract normative systems as a general
descriptive framework for formal approaches to normative reasoning and basis
for the subsequent introduction of propositional I/O logic, both of which then
are applied to modelling the three types of permissions commonly encountered
in normative context.

Abstract Normative Systems Modal logic has been the standard for nor-
mative reasoning ever since von Wright [1951]. Still, for instance in Gabbay
et al. [2013]’s “Handbook of Deontic Logic and Normative Systems”, the classi-
cal modal logic framework is mainly confined to the historical chapter. Another
chapter presents the alternatives to the modal framework, and three chapters dis-
cuss concrete approaches, namely I/O logic, the imperativist approach [Hansen,
2006], and the algebraic conceptual implication structures [Lindahl and Odel-
stad, 2003].18 Against this multitude of approaches as backdrop, Tosatto et al.
[2012] proposed abstract normative systems as common framework for compar-
ing and analysing these new proposals.

Abstract normative systems study frameworks such as I/O logic on a general
level, to which Tosatto et al. [2012] add two notions. First, each element in the
(finite) universe comes with its “anti-element”: this is the minimal extension to
represent violations, namely elements in the input whose anti-element is in the
output. Second, there is an element in the universe called >, contained in every
context.

Definition 1 (Universe L [Tosatto et al., 2012]). Given a finite set of
atomic elements E, the universe L is E ∪ {∼e | e ∈ E} ∪ {>}. For e ∈ E, let
a =∼e iff a = e, a = e iff a =∼e, and undefined iff a = >.

An abstract normative system is a directed graph, and a context is a set of nodes
of the graph containing >. In abstract normative systems there are three kinds
of relations, for the regulative, permissive, and constitutive norms, respectively.
We start with the regulative norms only. The edges in an abstract normative
system exactly define what a “conditional norm” (with respect to this abstract
normative system) is.

18 Of course this list is non-exhaustive as there are further alternative candidates for a
new standard, such as nonmonotonic logic [Horty, 1993] or deontic update semantics
[van der Torre and Tan, 1999].

23

Definition 2 (ANS 〈L,N〉 [Tosatto et al., 2012]). An abstract normative
system ANS is a pair 〈L,N〉 with N ⊆ L×L a set of pairs of the universe, called
conditional norms, and A ⊆ L a subset of the universe such that > ∈ A, called
the context.

In a context, an abstract normative system generates or produces an obliga-
tion set, a subset of the universe, reflecting the obligatory elements of the uni-
verse. The class of deontic operations is specified by their domain and codomain.
Some examples of deontic operations are given below.

Definition 3 (Deontic operation © [Tosatto et al., 2012]). A deontic op-
eration © is a function from an abstract normative system 〈L,N〉 and a context
A to a subset of the universe ©(〈L,N〉, A) ⊆ L. Since L is always clear from
context, we write ©(N,A) for ©(〈L,N〉, A).

Simple-minded output or ©1 is Makinson and van der Torre’s minimal sys-
tem. Basic output or ©2 allows for reasoning by cases, which now means that
if something is obligatory in the context of a and its complement a, then it is
obligatory also in the minimal context. Reusable output or ©3 allows for de-
ontic detachment, which now corresponds to iteration of the rules. Throughput
or ©+

i allows for identity. All possible combinations lead to eight input/output
operations.

Definition 4 (Eight deontic operations [Tosatto et al., 2012]). A context
A ⊆ L is complete if for all e ∈ E, it contains either e or e (or both).

©1(N,A) = N(A) = {x | (a, x) ∈ N for some a ∈ A}
©2(N,A) = ∩{N(V) | A ⊆ V, V complete}
©3(N,A) = ∩{N(B) | A ⊆ B ⊇ N(B)}
©4(N,A) = ∩{N(V) | A ⊆ V ⊇ N(V), V complete}
©+
i (N,A) =©i(N ∪ {(a, a) | a ∈ L}, A)

Equivalently, ©3(N,A) can be defined as N(B) where B is the smallest set
containing A and closed under N , i.e. A ⊆ B ⊇ N(B). Moreover, to emphasise
symmetry, ©1(N,A) can be defined equivalently as ∩{N(B)|A ⊆ B}.

At least since the work of Horty [1993], nonmonotonic techniques have been
used to deal with reasoning in the context of dilemmas, CTD reasoning, and
defeasible norms:

– Dilemmas are two (or more) obligations with contradictory content, like the
obligation for a and the obligation for a.

– CTD or secondary obligations (a, x) are in force only in case of violation of
a primary obligation, e.g., generated using (>, a).19

– Defeasible deontic logic is concerned with violations and exceptions [van der
Torre, 1997, Nute, 1997].

19 To give an intuitive example of a CTD, we report the so-called dog-sign example
by Prakken and Sergot [1997] already hinted at in the introduction: “Suppose that:
there must be no dog around the house, and if there is no dog, there must be

24

Propositional Input/Output Logic As explained by Makinson and van der
Torre [2000], propositional I/O logic establishes a relatively simple setting, ab-
stracting from important aspects of deontic reasoning, such as CTD reasoning
or permissions.20 The construction of the semantics is analogous to the just dis-
cussed abstract normative systems, adding the closure of input and output under
propositional consequence. As before, N(A) = {x | (a, x) ∈ N for some a ∈ A}.

Definition 5 (out [Makinson and van der Torre, 2000]). Let L be a propo-
sitional logic with Cn the consequence operator of L, > a tautology of L, a com-
plete set one that is either maxiconsistent or equal to L, and let N be a set of
ordered pairs of L (called the generators). A generator (a, x) is read as ‘if input
a then output x’. The following logical systems are defined:
out1(N,A) = Cn(N(Cn(A))
out2(N,A) = ∩{Cn(N(V)) : A ⊆ V, V complete}
out3(N,A) = ∩{Cn(N(B)) : A ⊆ B = Cn(B) ⊇ N(B)}
out4(N,A) = ∩{Cn(N(V)) : A ⊆ V ⊇ N(V), V complete}

Note that neither in the I/O logic framework, nor in the abstract normative
systems framework, does a normative system ‘imply’ a norm. Norms are used
to generate obligation sets; we can axiomatise deontic operations using a proof
system based on conditionals, but this does not mean that norms are “implied”
or “derived.” The most we can say is that a norm is “accepted” by a normative
system [van der Torre and Tan, 1999], or “redundant” in a normative system
[van der Torre, 2010]. The latter point may be related to two philosophical
considerations of the I/O logic framework. First, as already explained above,
the framework is based on the idea that norms do not have truth values, known
as Jörgensen’s dilemma in the deontic logic literature [Jörgensen, 1937]. Second,
the role of logic is not to create or determine a distinguished set of norms, but
rather to prepare information before it goes in as input to such a normative code,
to unpack output as it emerges and, if needed, coordinate the two in certain ways.
A set of conditional norms is thus seen as a transformation device, and the task
of logic is to act as its “secretarial assistant” [Makinson and van der Torre, 2000].

3.3 Overview of the Architecture

Our goal is to allow the agent to learn about norms and their interpretation from
experience, and to take decisions which respect the norms she is subject to at
the respective point in time. Thus, the agent needs to know what is obligatory

no warning sign, but if there is a dog, there must be a warning sign.” Obviously, if
there is a dog, the conditional obligation that there must be no sign does not become
unconditional, since its condition is not fulfilled. On the other hand, it can also be
inferred that if no obligations are violated, there will be no sign (modulo exceptions,
of course).

20 These require much more involved I/O operations, which we shortly discuss in Sec-
tion 3.4 below. Cf. the work by Makinson and van der Torre [2001] and Makinson
and van der Torre [2003a] for more detailed treatments.

25

and forbidden according to norms (conditional rules) in any situation in real
time: what is obligatory can eventually become an action of the agent, while
what is forbidden inhibits such actions. Also, rules may change as the normative
environment changes over time. The agent should be flexible enough to adapt
her behaviour to the context using as information the instances of behaviours
which have been considered illegal.

Normative code
with priorities,
permissions,
exceptions,
contrary to

duties.

Normative code
with priorities

Extended logic
program Neural network

Fig. 3. From normative codes to neural networks.

To allow an intelligent agent to have a internal representation of a normative
code, we follow the process visualised in Figure 3. The encoding process is a
single and unique task, and we just decompose it in subtasks to give a more
detailed explanation. The first step involves encoding a list of normative aspects
in terms of priorities and will be described in the next subsection. The second
step translates a normative code in I/O logic into an extended logic program (i.e.
LP extended with classical negation, a.k.a. explicit negation, which leads to the
answer set semantics of LP mentioned earlier in the context of three-valued log-
ics. The third step applies a translation algorithm to convert the logic program
into a neural network. The last two steps will be analysed in detail in Section 3.5.

Symbolic
Knowledge

Neural
Network ENVIRONMENT

AGENT
(2) Learn from

Examples

Actions

(1) CILP

(3) Update the KB

Fig. 4. Normative agent architecture.

Figure 4 describes our approach from a more abstract perspective. Note that
the encoding of a normative code in an ANN is lumped to a single step. Our

26

framework starts from the symbolic KB of norms contained in the agent, trans-
forming it into an ANN using the encoding introduced in Figure 3 and described
below. The ANN is structured as follows: input neurones of the network repre-
sent the state of the world, while the output neurones represent the obligations of
the agent, or the prohibitions. The ANN is used as part of the controller for the
agent and, given its ability to change (i.e. learn from examples), it is expected
to give the agent the required flexibility.

3.4 Normative Problems as Priorities

Recall, as discussed, that normative reasoning requires agents to deal with spe-
cific problems such as dilemmas, exceptions, and CTDs. In what follows, a norm
N will be expressed as labelled generators N = (I,O), read ‘if input I then
output O’. In general, I in (I,O) is any propositional formulae, which will be
restricted later to conjunctions of literals.

Dilemmas: two obligations are said to be contradictory when they cannot
be accomplished together. A possible example of contradictory norms is the
dilemma. This usually happens when an agent is subject to different normative
codes (i.e. when an agent has to follow the moral and the legal code). How to
overcome dilemmas is left as future work, as we are focusing on how to use pri-
orities to regulate exceptions and CTDs.

Priorities are used to give a partial ordering between norms. This is useful
when, given two applicable norms, we always want one to preempt the other, for
instance when dealing with exceptions. We encode priorities among the norms
by using negation by failure (∼). Given two norms N1 = (A1 ∧ A3, β1) and
N2 = (A2 ∧ A3, β2) and a priority relation N1 � N2 between the norms (such
that the first norm has priority), we encode the priority relation by modifying
the antecedent of the norm with lower priority. Specifically, we include in the
antecedent of the norm with the lower priority the negation-as-failure of the lit-
erals in the antecedent of the higher priority norm that does not appear in the
antecedent of the lower priority norm. We do so in order to ensure that, in a sit-
uation where both (unmodified) norms would be applicable, the newly inserted
negation-as-failure atoms in the antecedent of the modified lower-priority norm
evaluate to false and make the norm not applicable. Considering for example
the two norms given above, we have to modify N2. The only atom appearing in
N1’s input and not in N2’s input is A1, and therefore we introduce ∼ A1 as a
conjunct in N2’s input. After embedding the priority, the second norm becomes
N ′2 = (A2∧ ∼ A1 ∧A3, β2). Note that in a potentially conflicting situation when
A1, A2 and A3 hold, N1 and N2 are applicable, but N ′2 is not, thus avoiding the
conflict.

Exceptions occur when, due to particular circumstances, a norm should be
followed instead of another. Suppose that a norm N3 = (α, β) should be applied

27

in all the situations containing α. For exceptional situations we consider an ad-
ditional norm N4 = (α ∧ γ,¬β). The latter norm should be applied in a subset
of situations w.r.t. N3: specifically all those when, in addition to α, also γ holds.
We can call situations where both α and γ hold exceptional situations. In these
exceptional situations both norms could be applied. This would produce two
contrasting obligations: β and ¬β. To avoid this we add the following priority
relation: N4 � N3. Therefore we modify the input of the norm with lower prior-
ity as described earlier. The result is a new norm N ′3 = (α∧ ∼ γ, β), that would
not be applied in the exceptional situations, avoiding the problem of contrasting
obligations.

CTDs: An important property of norms is that they are soft constraints
and, accordingly, can be violated. CTDs provide additional obligations to be
fulfilled when a violation occurs. For example, consider a norm N5 = (α, β) that
should be applied in all situations containing α and producing the obligation
β. As mentioned, norms can be violated, therefore we can also define a norm
that produces alternative obligations to be followed in case of a violation. Let
this new norm be N6 = (α ∧ ¬β, γ). The latter norm contains in its input both
the input of N5 and the negation of its output. In this way it describes which
should be the alternative obligation to β in the case that it cannot be achieved,
in this example γ. We use a priority relation between the two norms in order to
avoid the generation of the obligation β in case it is already known that it is not
satisfiable. We add then the following priority relation N6 � N5 that modifies
the first norm as follows: N ′5 = (α∧ ∼ ¬β, β).

Permissions: An important distinction between obligations and permissions
is that the latter will not be explicitly encoded in the ANN. In our approach
we consider that something is permitted to the agent if not explicitly forbidden
(note that we consider the ought of a negative literal as a prohibition). Due to
this, we assume that norms with a permission in their output implicitly have
priority over the norms that forbid the same course of action21. For example,
using P in the output of a norm to denote a permission, consider two norms
N7 = (A1, P (β1)), N8 = (A2,¬β1). The first norm permits β1 and the second
forbids it. In this case, we use the following priority relation: N7 � N8.

3.5 Normative Connectionist Inductive Learning and Logic
Programming

In this section we introduce a new approach for coding a fragment of I/O logic
which corresponds to extended LP into ANNs. The main intuition is that, al-
though logic programs in general do not explicitly capture the concepts of inputs

21 Makinson and van der Torre [2003a] consider three kinds of permissive norms, namely
negative, positive, and static positive permission. In this article, we restrict discus-
sions to the above, and should note that much future work is left to be done when
it comes to the provision of connectionist representations for normative and deontic
reasoning systems

28

and outputs, a neural-symbolic system based on extended logic programming
does - on a purely structural level: inputs and outputs in I/O logic correspond
to the input and output layers of the ANN - and allows the representation of
norms in ANNs.

As described above, in I/O logic norms are represented as ordered pairs of
formulas like (α, β). A peculiarity of I/O logic is that it does not have (α, α) for
any α (i.e. identity is not an axiom). In normative reasoning, the input does not
necessarily become an output: the reason is that the output is interpreted as what
is obligatory, thus, just because a is in the input, it is not necessarily the case that
a is obligatory as well. This I/O perspective corresponds straightforwardly to the
general intuition behind an ANN. Activating input neurone A in Figure 2 does
not necessarily activate output neurone A also; this is true for any neurone, and
it allows a subtle but important distinction between the activation of an input
neurone which is derived from the context, that is, the input values provided
to the network, and the activation of an output neurone, which is derived from
the KB. For example, in Figure 2, the truth-value of B in the input is, at first,
obtained from the input to the network (its context), whilst the truth-value of
B in the output is true (B is a fact in the KB). Modifying the original CILP
algorithm, we first translate I/O logic into an extended logic program to be
processed by CILP without requiring inputs to be always translated into outputs
as well, so that the ANN is allowed different input and output layers. The input
α of an I/O norm (α, β) is subsequently passed as an input vector to the network,
producing an output representing what is obligatory (e.g. β, if the translation
to the ANN is proved correct). Only some input appears in the output, if it is
made obligatory by a norm. In CILP, output nodes are always connected to input
nodes creating a recurrent network, to represent the transitivity of logical rules
when computing minimal or stable models. In normative reasoning, transitivity
is not always accepted (since if you are obliged to do a and, if a then you are
obliged to do b does not imply that you are obliged to do b). Thus, the normative
CILP extends CILP also to allow that certain outputs might not be connected
to their corresponding inputs (or will not even have a corresponding input as a
result of the first change made to CILP earlier).

Mapping Input/Output Logic into Neural Networks We now first intro-
duce a specific fragment of I/O logic relevant for our purposes, then we present
an embedding of this fragment into extended logic programs, and finally, how to
represent such norms with priorities in ANNs.

Definition 6. An extended logic program is a finite set of clauses of the form
L0 ← L1, . . . ,∼ Ln,∼ Ln+1, . . . ,∼ Lm, where Li (0 ≤ i ≤ n) is a literal i.e. an
atom or a classical negation of an atom denoted by ¬, and ∼ Lj (n + 1 ≤ j ≤
m) is called default literal, where ∼ represents negation-as-failure. Following
Gelfond and Lifschitz [1988], from now on we use ‘←’ in place of ‘→’, and say
that L0 is true if L1, ..., Lm is true (L0 ← L1, ..., Lm), where L1, ..., Lm denotes
a conjunction of literals (with ‘,’ used in place of ‘∧’).

29

Given an extended logic program P we identify its answer sets [Gelfond and
Lifschitz, 1991] as EXT (P).

Definition 7 (I/O Normative Code). A normative code G = 〈O,P,�〉 is
composed by two sets of rules r : (α, β) and a preference relation � among those
rules. Rules in O are called obligations, while rules in P are permissions. Rules
in O are of the type (α, β), where:

– α = α1 ∨ . . .∨αn is a propositional formula in disjunctive normal form, i.e.
αi (for 0 ≤ i ≤ n) is a conjunction of literals (¬aαi1∧ . . .∧¬aαim∧aαi(m+1)

∧
. . .∧ aα1(m+p)

). Without loss of generality we assume that the first m literals
are negative while the other p are positive.

– β = ¬bβ1
∧ . . .∧¬bβm

∧ bβm+1
∧ . . .∧ bβm+p

is a finite conjunction of literals.

Rules in P are of type (α, l), where α is the same as for obligations, but l is a
literal.

As put forward by Boella and van der Torre [2005], one of the roles of permissions
is to undercut obligations. Informally, suppose to have a normative code G
composed of two rules:

1. b is obligatory (i.e. (>, b) ∈ O).
2. If a holds, then ¬b is permitted (i.e. (a,¬b) ∈ P).

We say that the rule (a,¬b) has priority over (>, b), i.e. b is obligatory as long
as a does not hold, otherwise ¬b is permitted and, therefore b is not obligatory
anymore.

The fact that we consider only the I/O rules as introduced in Definition 7 per-
mits us to give a natural embedding of this fragment of I/O logic into extended
logic programs.

Definition 8. Let d·e denote a function mapping I/O rules (Definition 7) into
extended logic programs (Definition 6), as follows:

dr : (α1 ∨ . . . ∨ αn, β1 ∧ . . . ∧ βm)e =
{r11 : (dβ1eout ← dα1ein); . . . ; r1m : (dβmeout ← dα1ein); . . . ;
rn1 : (dβ1eout ← dαnein); . . . ; rnm : (dβmeout ← dαnein)}

dl1 ∧ . . . ∧ lnein/out = dl1ein/out, . . . , dlnein/out
daein = in a daeout = out a

d¬aein = ¬in a d¬aeout = ¬out a

We call rules rij instances of r, and we informally write rij ∈ Ints(r).

Notice that the program resulting from the application of d·e has a unique model
because it is negation-as-failure free.

Lemma 1. Given a set of obligations O = {(α1, β1), . . . , (αn, βn)}. Then it
holds that:

If (α, β) ∈ O then dβeout ∈ EXT ({d(α1, β1)e; . . . ; d(αn, βn)e} ∪ dαein).

30

Proof. The if direction is trivial while the only if can be proven by showing that
every application of the immediate consequence operator T (as defined by Gelfond
and Lifschitz [1991]) can be encoded into an application of d·e (Definition 8).

We now show how to extend the preference relation � w.r.t. rules generated with
d·e.
Definition 9. Given a normative code G = 〈O,P,�〉 we define a transforma-
tion Tro(·) such that Tro(G) = 〈dOe,P,�′〉, where �′ is defined as follows:
tij �′ t′i′j′ , for all tij ∈ Inst(t) and t′i′j′ ∈ Inst(t′) for t, t′ ∈ O such that t � t′.
For this reason, for a given normative code Tro(G), we introduce a further
transformation Trp(·) as follows:

Definition 10. Given a normative code Go = Tro(G) = 〈dOe,P,�′〉 we define
Trp(Go) = 〈dOe,P,�′′〉, where �′′ is defined as follows: For all p : (α, l) ∈ P,
p �′′ tij, for all tij : (α,¬l) ∈ dOe

We now recall how to encode (metalevel) preference relations, which define
a priority between LP rules into (object-level) extended logic programs [Nute,
1994].

Definition 11. (Object-level Priorities) Given a preference relation between
ri and r such that ri � r for 1 ≤ i ≤ j, replace the clause r : Lq+1 ← (L1, ..., Lp)

with the clause Lq+1 ← (L1, ..., Lp,∼ L1
p+1, ...,∼ L1

q, ...,∼ L
j
p+1, ...,∼ Ljq), where

ri(1≤i≤j) : (Liq+1 ← Lip+1, ..., L
i
q).

Example 2. Take the following normative code:

G = 〈{r : (a,¬b ∧ c)}, {p : (d, b)}, {}〉.

Then Tro(G) = {〈r11 : (a,¬b); r12 : (a, c)}, {p : (d, b)}, {}〉, and Trp(Tro(G)) =
{〈r11 : (a,¬b); r12 : (a, c)}, {p : (d, b)}, {p � r11〉}.

For rules with permissions in the output, which are of the form pi : Lim+1
←

(Li1 , . . . , Lin , Lin+1
, . . . , Lim), such that, for any other rule, r : ¬Lim+1

← (Li1 , . . . , Lin)
(resulting from the application of dGe), we impose pi � r. As discussed, the role
of permissions is to undercut obligations in dGe, and permissions will not be en-
coded explicitly into the ANN (every output of the ANN counts as an obligation;
something is permitted if the contrary is not obligatory, see Section 3.5).

Lemma 2. Let P� = {r1, r2, ..., rn} be an extended logic program with an ex-
plicit preference relation �. Let P denote the translation of P� into a program
without � (Definition 11). It follows that EXT (P�) = EXT (P).

We are particularly interested in the translation of P� into P because it is
well-known that CILP networks will always compute the unique answer set of
P , by converging to a unique stable state, provided that P is well-behaved (i.e.
locally stratified, or acyclic, or acceptable, cf. Garcez et al. [2002]). This will be
explored further in the next subsection. Before proceeding, let us use an example
to illustrate what has been achieved so far.

31

Example 3. (Translation of normative code into extended logic program) Con-
sider the following normative code:

r1 : (a ∨ b,O(c))
r2 : (d ∧ e,O(f))
r3 : (g,P(¬f))
r1 � r2

First, obligations are decomposed into instances:
r1 : (a ∨ b,O(c))
r2 : (d ∧ e,O(f))
r3 : (g,P(¬f))
r1 � r2

r11 : c← a
r12 : c← b
r2 : f ← d, e
r3 : (g,P(¬f))
r1 � r2

Secondly, the priorities are decomposed:
r11 : c← a
r12 : c← b
r2 : f ← d, e
r3 : (g,P(¬f))
r1 � r2

r11 : c← a
r12 : c← b
r2 : f ← d, e
r3 : (g,P(¬f))
r11 � r2
r12 � r2

Finally, the permission-generated priorities are added:
r11 : c← a
r12 : c← b
r2 : f ← d, e
r3 : (g,P(¬f))
r11 � r2
r12 � r2

r11 : c← a
r12 : c← b
r2 : f ← d, e
r3 : (g,P(¬f))
r11 � r2
r12 � r2
r3 � r2

And the priorities are encoded as norm inputs:
r11 : c← a
r12 : c← b
r2 : f ← d, e
r3 : (g,P(¬f))
r11 � r2
r12 � r2
r3 � r2

r11 : c← a
r12 : c← b
r2 : f ← d, e,∼a,∼b,∼g

The result is an equivalent extended logic program.

32

The N-CILP algorithm In this section we introduce the translation algorithm
encoding a normative code into a feedforward ANN (with semi-linear neurones),
namely the Normative-CILP (N-CILP) algorithm. The proposed algorithm dif-
fers from CILP [Garcez et al., 2002] in how priorities are encoded into the ANN,
and it does not assume identity.

N-CILP Algorith (Input: normative code G; Output: ANN)

1. G′ = Tro(G);G′′ = Trp(G
′)

2. Apply the encoding of priorities as described in Definition 11 to G′′.

3. For each rule Rk = βo1 ← αi1 , . . . , αin ,∼ αin+1, . . . ,∼ αim /∈ P.

(a) For each literal αij (1 ≤ j ≤ m) in the input of the rule: if there is no
input neurone labeled αij in the input level, then add a neurone labeled
αij in the input layer.

(b) Add a neurone labeled Nk in the hidden layer.

(c) If there is no neurone labeled βo1 in the output level, then add a neurone
labeled βo1 in the output layer.

(d) For each literal αij (1 ≤ j ≤ n): connect the respective input neurone
with the neurone labeled Nk in the hidden layer with a positive weighted
arc.

(e) For each literal ∼ αih (n + 1 ≤ j ≤ m): connect the respective input
neurone with the neurone labeled Nk in the hidden layer with a neg-
ative weighted arc (the connections between these input neurones and
the hidden neurone of the rule represent the priorities translated with
negation-as-failure).

(f) Connect the neurone labeled Ni with the neurone in the output level
labeled βo1 with a positive weighted arc (each output in the rules is con-
sidered as a positive atom during the translation; a rule with a negative
output ¬β is translated in the network as output neurone labeled β′ that
has the same meaning of ¬β but for the purpose of the translation can
be treated as a positive output).

Proposition 1. For any normative code in the form of an extended logic pro-
gram there exists an ANN obtained from the N-CILP translation algorithm such
that the network computes the answer set semantics of the code.

Proof. Definition 8 translates a normative code into an extended logic program
having a single extension (or answer set). From Lemma 2, the program extended
with a priority relation also has a single extension. Garcez et al. [2002] show
that any extended logic program can be encoded into an ANN. N-CILP performs
one such encoding using network weights as defined by Garcez et al. [2002].
Hence, N-CILP is sound. Since the program has a single extension, the iterative
recursive application of input-output patterns to the network will converge to this
extension, which is identical to the unique answer set of the program, for any
initial input.

33

We end this subsection with a complete example of a translation of a norma-
tive code to an ANN. The following captures parts of the rule set a soccer-playing
agent might be equipped with regarding the need to stop an opponent from scor-
ing a goal in different situations (as, for instance, potentially encountered in the
RoboCup robot soccer competitions):

R1 = (opponentShooting ∧ closeToOpponent, O(impactingOpponent))
R2 = (goalkeeper ∧ insideOwnArea ∧ closeToOpponent ∧ opponentHasBall,
O(impactingOpponent))
R3 = (haveBall ∧ closeToGoal ∧ closeToOpponent, O(impactingOpponent))

This set of norms is translated to an extended logic program:

impactingOpponent ← opponentShooting ∧ closeToOpponent
impactingOpponent ← goalkeeper, insideOwnArea, closeToOpponent, opponentHas-
Ball
impactingOpponent ← haveBall, closeToGoal, closeToOpponent

Which, in turn, is embedded in the following ANN:

opponent
shooting

closeTo
opponent

goalkeeper inside
OwnArea

opponent
HasBall

R1 R2 R3

impacting
opponent

haveBall closeTo
goal

Initial Experimental Evaluation of the N-CILP Algorithm In order to
gain a first idea of the performance and properties of the proposed N-CILP
algorithm and the resulting networks, it has been implemented in a proof-of-
concept simulator then applied to the above RoboCup example scenario. While
the results reported here are still preliminary, they indicate the capabilities of
the neural-symbolic approach to normative reasoning and learning under uncer-
tainty.

In the simulator, the KB contains the normative rules that an agent knows.
We assume that the priorities are embedded in the rules. The KB is then read
as input to the N-CILP translation algorithm, which produces a standard ANN
trainable with backpropagation (cf., e.g., Haykin [1999]). The results of training
the ANNs are evaluated in the usual way, whereby the performance of a network

34

with random weights initially, i.e. without KB, is compared with that of a net-
work set-up using N-CILP, that is, with KB. Both networks are trained on the
same set of examples: pairs of input vectors (opponentShooting, closeToOppo-
nent, etc.) and target output vectors (ImpactingOpponent) with values 1, 0 and
-1 denoting, respectively, true, unknown and false. The networks are trained and
tested using cross-validation, where the set of examples is divided systematically
into a training and a test set, multiple networks are trained and tested on each
division (with the test set never seen by the netowork during training), and re-
sults are averaged out to produce a better estimate of the network’s ability to
generalise to new data, that is, its test set performance.

In evaluating the test set performance of the network, two distinct measures
are used: tot and part.

tot =

∑n
i=1 I(

∧k
j=1(cij == oij))

n

part =

∑n
i=1

∑k
j=1 I(cij == oij)

n ∗ k
Here, n refers to the cardinality of the test set, k is the number of output
neurones in the network, oij is the value of the j-th output of the network for
the i-th test instance, cij is the target (desired) value of the j-th literal for the
i-th test instance, I(·) is the indicator (i.e. a function returning 1 if the argument
is true, and zero otherwise). The tot measure evaluates how many examples were
estimated by the ANN correctly in their entirity (that is w.r.t. the entire target
output vector), while part measures the average number of output neurones
correctly evaluated by the ANN.

Comparison with a purely connectionist approach: The test-set per-
formance of a network built using N-CILP is compared with that of a non-
symbolic ANN. One of the well known issues in neural-network training is how
to decide the number of neurones in the hidden layer. In the case of N-CILP, this
number is given by the number of symbolic rules. We adopt the same number
of hidden neurones for both networks and do not perform model selection. The
difference between the networks is in the values of the connection weights only.
As mentioned, the ANN built with N-CILP sets its weights according to the
rules in the KB, whilst the non-symbolic network has its weights initialised ran-
domly. The expected advantage of the network built with N-CILP is that, even
without any training, it should be capable of estimating correctly the output
value of some of the examples by applying the rules contained in the KB (if the
translation is correct, as proved, and the KB is relevant to the data classification
problem at hand).

The network built with N-CILP, thus, has the head-start of a KB containing
rules similar to (and including) the ones used in the example given at the end of
the previous section. During the training phase, the network tries to learn addi-
tional rules provided in the form of training examples (input-output vectors). In
the interest of fairness, the non-symbolic network is also provided with training

35

examples derived from the initial rules,22 but has to learn all rules from scratch
using backpropagation. The entire set of rules and preference relations used in
our experiments, now with multiple outputs, is given below.

R1 = (kickoff , O(-score))
R2 = (kickoff & MateTouchesBall , P(score))
R3 = (kickoff & MinBallMoved , P(score))
R4 = (True , O(-useHands))
R5 = (goalkeeper & InsideOwnArea , P(useHands))
R6 = (True , O(-contactingOpponent))
R7 = (True , O(-impactingOpponent))
R8 = (impactingOpponent , O(minimizeImpact))
R9 = (contactingOpponent , O(terminateContact))
R10 = (mateInsideOwnArea , O(-insideOwnArea))
R11 = (mateInsideOpponentArea , O(-insideOpponentArea))
R12 = (opponentFreeKick , O(keepDistance))
R13 = (goalkeeper & OpponentPenaltyKick & -ballTouched , O(-getBall))
R14 = (haveBall & OpponentApproaching , O(pass))
R15 = (haveBall & OpponentApproaching & OpponentCloseToMate , O(-pass))
R16 = (haveBall & CloseToGoal , O(shoot))
R17 = (opponentShooting & CloseToOpponent , O(impactingOpponent))
R18 = (goalkeeper & InsideOwnArea & CloseToOpponent & OpponentHasBall
, O(impactingOpponent))
R19 = (-goalkeeper & MateInsideOwnArea & OpponentShooting , O(-impactingOpponent))
R20 = (haveBall & CloseToGoal & CloseToOpponent , O(impactingOpponent))
R21 = (opponentHasBall & CloseToOpponent & CloseToGoal , O(-impactingOpponent))
R22 = (-mateInsideOwnArea & CloseToOpponent & OpponentHasBall , O(useHands))
R23 = (insideOwnArea & MateInsideOwnArea & OpponentApproaching , O(-
impactingOpponent))
R24 = (insideOwnArea & HaveBall , O(pass))
R25 = (opponentFreeKick , O(-canScore))
R26 = (opponentPenaltyKick , O(keepDistance))

R2 � R1
R3 � R1
R5 � R4
R8 � R7
R9 � R6
R15 � R14
R17 � R7
R18 � R7

22 Given a rule, e.g. B ← A, input and output vectors are created having ‘1’ in the
position corresponding to A in the input vector, and ‘1’ in the position corresponding
to B in the output vector.

36

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 18 20 22 24 26 28

A
c
c
u

ra
c
y

of Rules

tot
part

Fig. 5. Accuracy of tot and part measures for increasing numbers of rules in the knowl-
edge base.

R19 � R17

The results show that the non-symbolic ANN is not able to achieve the same
level of accuracy as the N-CILP network. Using the first 20 rules above (R1 to
R20) to set up the ANN with N-CILP and the remaining 6 rules (R21 to R26)
for testing produced test-set performances tot = 5.38% and part = 49.19%,
while the non-symbolic network achieved tot = 5.13% and part = 45.25%. More
importantly, when we evaluate how the N-CILP ANN perform with increasing
number of rules in the KB, test-set performances also increase in a consistent way
(see Figure 5. This confirms empirically that the ANN is capable of computing
the same semantics as given by the rules in the KB (rules R23 and R24 seem to
be particularly relevant), and to exploit learning from examples, which allows
a normative agent to increase and adjust its knowledge in the face of multiple
possible obligations which may change dynamically in time.

The test is done incrementally using the same 26 rules. The experiment’s
first run starts with a KB containing the first 20 rules, as before. Subsequently,
two additional rules are added to the KB, with each consecutive run decreasing
the number of unknown rules that the network has to learn by two, as shown in
Figure 5. In the last experiment, with 26 rules, the figure reports the network’s
traning set performance since there are no rules left from which to derive test
set patterns.

For the first two experiments, accuracy remains low, while for the last two,
performance increases considerably reaching a peak of 98,01% for the part mea-
sure and 91,18% for tot.

37

Learning CTDs: In a final experiment, we measure the capacity of an ANN
built with N-CILP to learn new CTDs. This is done by using a KB with the
priority-based orderings that regulate the CTDs left out.

We tested the network on learning three different CTDs, again in the robot-
soccer context. The first refers to a situation where a robot player should never
impact on an opponent (R7), but if a collision route is inevitable, then the robot
should make its best to minimise the impact (see R7c below). The second CTD
addresses a situation where the soccer robot is in physical contact with an oppo-
nent, which for most situations is forbidden by standard soccer rules (R6), and
should try to terminate the contact (see R6c below). The third CTD handles a
situation where, although generally not being allowed to use its hands (R4), the
robot finds itself in the role of the goalkeeper (see R4c below). Rules R4, R6 and
R7 are reproduced below for convenience.

R7 = (> , O(¬ impactingOpponent))
R7c = (impactingOpponent , O(minimizeImpact))
R6 = (> , O(¬contactingOpponent))
R6c = (contactingOpponent , O(terminateContact))
R4 = (> , O(¬useHands))
R4c = (goalkeeper & InsideOwnArea , P(useHands))

Removing the priority-based orderings results in an incomplete system that
produces, in similar situations, both the unfulfillable obligation and the relative
obligation to handle the suboptimal situation that is being analysed. Delivering
on the promise to be able to deal with this type of uncertainty in the context
of norms, what we expect from our approach is the ability to learn the priority-
based orderings that regulate the CTDs. The ANN is trained with a set of
examples containing both regular situations (R4, R6, R7) and situations in which
the CTD is applied (R4c, R6c, R7c). The resulting network is tested with a test
set containing situations where an application of the CTD becomes necessary.

For the first CTD, results show a 95% test-set performance by the network,
which generated minimizeImpact only when in the suboptimal CTD situation in
question. For the two other CTDs, the results show an accuracy of 93% and 87%
on their respective test sets. This indicates that N-CILP is capable of learning
CTDs not included in the construction of the ANN. It, thus, allows us to avoid
a total description of the corresponding domain (which very often turns out
overly expensive or simply infeasible) as missing norms can be acquired through
learning from examples.

4 Conclusion

At the beginning of Section 1 we set out to argue two connected claims. Firstly,
we aimed to show that probability is not the only way of dealing with uncer-
tainty (and even more, that there are kinds of uncertainty which are for prin-
cipled reasons not addressable with probabilistic means). Secondly, we wanted

38

to provide evidence that logic-based methods can well support reasoning with
uncertainty, using two paradigmatic examples: LP with Kleene semantics for
modelling reasoning from information in a discourse, to an interpretation of the
state of affairs of the intended model, and a neural-symbolic implementation of
a fragment of I/O logic expressed as extended LP for dealing with uncertainty
in dynamic normative contexts. Looking back at what has been reported in the
previous sections, we believe that both goals have been met. Even more, while
at first sight seeming fairly independent from each other, we hope that also
the intrinsic—formal and conceptual—connection between LP for reasoning to
an interpretation on the one hand, and the neural-symbolic I/O logic approach
combining normative reasoning and learning on the other hand, have become
apparent. The neural-symbolic I/O setting presents a natural expansion of the
LP approach. In addition, the normative features also (via the additional ANN
characteristics) add learning capacities to the previously exclusively reasoning-
focused framework.23 Still, it should be clear that the discussed account of LP
and neural-symbolic I/O logic are only two examples among several for logic-
based methods dealing with forms of uncertainty, and that even for these two
the presented work can only be considered initial steps in the direction of fully
exploring—and exploiting—the possibilities offered by the respective approaches
beyond the use of probabilistic models.

As a general insight gained from our described explorations into uncertainty
and logical methods, we note that in fact examining the nature of the uncertainty
and its twinned necessity in each logic provides at least a semi-systematic method
of exploring for species of uncertainty. As we noted, at least LP, and deontic
logics provide examples which are clearly interesting for human cognition and
the modelling thereof with computational means. These are the first which we
have examined in any detail. We do not claim that every logic has its own
distinct species, nor that every species enumerated in this way is of any interest
to cognitive modelling or AI. However, even from these examples, it is clear that
logic can serve as a royal road to the exploration (and handling) of different
kinds of uncertainty. The only generalisation we would offer at this point is that
logics differ in their kind of uncertainty insofar as they specify distinct kinds of
epistemic state. It is the epistemic states that cannot always be matched by other
logics that give rise to different kinds of uncertainty, rather than some general
property of the inferences that are valid, or the content of their propositions.

Concerning future work, it seems desirable to also develop an architecture
combining the described form of LP modelling with neural-symbolic computing
analogous to the I/O logic setting. As discussed, for instance, by Stenning and
van Lambalgen [2008], there is already a neural implementation for simple LP.
Constraint LP is a more expressive logic which includes the Event Calculus, and
is required for modelling, among other things, all but the simplest reasoning in

23 The presented approach to LP modelling of discourse does not tackle the learning of
KB rules, as discourse comprehension generally is assumed to proceed with a mature
KB. But an account of learning is nevertheless an important goal for LP models of
discourse.

39

the processing of time and causality in narrative discourse [van Lambalgen and
Hamm, 2004]. A neural network implementation for this formalism is currently
lacking, but would most likely have great advantages: on the one hand, intro-
ducing the ANN characteristics as part of the neural-symbolic implementation
would allow the introduction of learning capacities into the discourse processing
context, expanding the approach and corresponding model in a natural way. On
the other hand the availability of such an architecture would further bridge from
the currently still (mostly) cognitive modelling-oriented setup to applications of
the paradigm in corresponding models in cognitively-inspired AI.

Regarding the neural-symbolic implementation of I/O logic, we next hope to
introduce an explicit notion of context in the neural-symbolic system. In reality,
choices are not made by only taking into consideration the current situation,
but are usually also influenced by past events. Continuing with the robot soccer
example, for instance we might want to consider situations where a robot changes
its style of play due to the previous and current history: yellow cards received
would make the robot play in a safer way to avoid being sent off; if the current
result suggests that the robot team is already winning, they could prefer to play
more defensively to prevent the other team equalising. In order to implement
those mechanisms, the system must be capable of memorising past events. One
way to solve this might be to add external memory to the networks [Weston
et al., 2014]. With this solution the context nodes in the ANN could be added
in the same way as for the rules, the difference being that for each context in
the input level there would be a correspondent output context which is linked
from the output to the input levels, in order to maintain memory if any context
modified its status during computation. A related line of potential future research
involves the area of argumentation. Argumentation has been proposed, among
other things, as a method to help symbolic machine learning. In Mozina et al.
[2007]’s approach, an expert’s reasons for some of the training examples can be
used to try and guide the search for hypotheses, in a way similar to our use of
background knowledge [Garcez et al., 2005].

In a third line of development on the systems-oriented side, we want to take
the neural-symbolic architecture for I/O and—reusing insights from the LP ap-
proach described in this article— develop a follow-up framework additionally
modelling interpretation-related aspects of reasoning. If successful, this would al-
low to address the case when one does not know which propositions are actually
relevant (i.e. combining reasoning to an interpretation with subsequent norma-
tive reasoning while maintaining the ability to deal with dynamically changing
sets of rules).

From a conceptual perspective, we would like to get clearer how uses of in-
tensional and extensional systems—as already discussed in Section 1—might
work together. Stenning et al. [2017] argue that systems that use extension sets
to capture the meanings of predicates—at least when those systems are used
for cognitive modelling—necessarily rely for their foundations on intensional
systems that can capture the interplay of motivations of the reasoner (desires,
purposes, goals, preferences, . . .). The extensional systems ‘precisify’ or perhaps

40

operationalise intensional meanings in specific contexts. But different extensional
precisifications of the same intensional concept may be incompatible in having
different extensions. Intensional systems can capture the crucial abstractions
due to the flexibility of motivational elements, answering the question ‘Why this
extension in this interpretation?’. Extensional systems are important, but their
importance cannot be understood without understanding their basis in inten-
sional systems. The issues of operationalising concepts for statistical modelling
are commonplace to psychologists, but analogous decisions have to be made in
many other related domains, including everyday discourse. If we are reasoning
about the reliability of the conditional “If the brake pedal is pressed, the car slows
down.” then the extension of cars excludes ones on the dump. If a mechanic is
searching for a spare part, and reasons about the conditional: “If the car is a
2009 or later, it complies with the emissions regulations.” then the ones on the
dump may be exactly the ones that are in the relevant extension. We negotiate
extensions for ‘car’ through our intensional purposes for reasoning, and when we
construct them, they do not replace the vague intensional meanings that went
into their construction. Reiterating a point already argued in the introduction,
“intensional” systems like LP with Kleene semantics can express goals in a sense
which is not fully possible in “extensional” systems like probability theory. So,
once again, it is important to distinguish the different kinds of uncertainty they
treat. At the most general level, this paper is an argument for a strategy in
understanding uncertainty. The novel kinds of uncertainty exemplified here are
of a rather extreme kind. Establishing extreme examples is important. Extreme
examples may not make good law, but they greatly aid exploration.

Acknowledgements

We want to thank the following people for their indispensable contributions
to different parts of the work reported in this article: Guido Boella, Silvano
Colombo Tosatto, Valerio Genovese, Laura Martignon, Alan Perotti, and Alexan-
dra Varga.

Bibliography

Carlos E Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of
theory change: Partial meet contraction and revision functions. The journal
of symbolic logic, 50(02):510–530, 1985.

G. Antoniou, D. Billington, and M.J. Maher. Sceptical logic programming based
default reasoning: defeasible logic rehabilitated. In Rob Miller and Murray
Shanahan, editors, COMMONSENSE 98, The 4th Symposium on Logical For-
malizations of Commonsense Reasoning, London, 1998.

K. R. Apt and D. Pedreschi. Reasoning about termination of pure prolog pro-
grams. Information and Computation, 106:109–157, 1993.

G. Baggio, K. Stenning, and M. van Lambalgen. The cognitive interface. In
M. Aloni and P. Dekker, editors, Cambridge Handbook of Formal Semantics.
Cambridge University Press, Cambridge, UK, 2016.

G. Boella and L. van der Torre. Permission and authorization in normative
multiagent systems. In Procs. of Int. Conf. on Artificial Intelligence and Law
ICAIL, pages 236–237, 2005.

G. Boella, G. Pigozzi, and L. van der Torre. Normative framework for normative
system change. In 8th Int. Joint Conf. on Autonomous Agents and Multiagent
Systems AAMAS 2009, pages 169–176. IFAAMAS, 2009.

Guido Boella and Leendert van der Torre. A game theoretic approach to con-
tracts in multiagent systems. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part C, 36(1):68–79, 2006.

R. Bradley and M. Drechsler. Types of uncertainty. Erkenntnis, 79:1225–1248,
2014.

K. Doets. From logic to logic programming. MIT Press, Cambridge, MA, 1994.

Dov Gabbay, John Horty, Xavier Parent, Ron van der Meyden, and Leendert
van der Torre, editors. Handbook of Deontic Logic and Normative Systems.
College Publications, London, 2013.

A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Symbolic knowledge extrac-
tion from trained neural networks: A sound approach. Artificial Intelligence,
125:155–207, 2001.

A. S. d’Avila Garcez, K. Broda, and D.M. Gabbay. Neural-Symbolic Learning
Systems: Foundations and Applications. Perspectives in Neural Computing.
Springer, 2002.

Artur S. d’Avila Garcez, Dov M. Gabbay, and Luis C. Lamb. Value-based
argumentation frameworks as neural-symbolic learning systems. Journal of
Logic and Computation, 15(6):1041–1058, 2005.

Artur S. d’Avila Garcez, L. C. Lamb, and D. M. Gabbay. Neural-Symbolic
Cognitive Reasoning. Cognitive Technologies. Springer, 2009.

Artur S. d’Avila Garcez, Tarek R. Besold, Luc de Raedt, Peter Földiak, Pascal
Hitzler, Thomas Icard, Kai-Uwe Kühnberger, Luis Lamb, Risto Miikkulainen,
and Daniel Silver. Neural-Symbolic Learning and Reasoning: Contributions

42

and Challenges. In AAAI Spring 2015 Symposium on Knowledge Represen-
tation and Reasoning: Integrating Symbolic and Neural Approaches, volume
SS-15-03 of AAAI Technical Reports. AAAI Press, 2015.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proceedings of the 5th Logic Programming Symposium, pages 1070–1080.
MIT Press, 1988.

M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–385, 1991.

Gerd Gigerenzer, Peter M. Todd, and The ABC Research Group. Simple heuris-
tics that make us smart. Oxford University Press, 1999.

Gerd Gigerenzer, Ralph Hertwig, and Thorsten Pachur. Heuristics: The foun-
dations of adaptive behavior. Oxford University Press, 2011.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech recogni-
tion with deep recurrent neural networks. CoRR, abs/1303.5778, 2013. URL
http://arxiv.org/abs/1303.5778.

J.Y. Halpern. Reasoning about uncertainty. MIT Press, Cambridge, MA., 2005.

Joerg Hansen. Deontic logics for prioritized imperatives. Artificial Intelligence
and Law, 14(1-2):1–34, 2006.

Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall,
1999.

John F. Horty. Deontic logic as founded on nonmonotonic logic. Ann. Math.
Artif. Intell., 9(1-2):69–91, 1993.

J. Jörgensen. Imperatives and logic. Erkenntnis, 7:288–296, 1937.

P. Juslin, Nilsson H., and A. Winman. Probability theory, not the very guide of
life. Psychological Review, 116(4):856–874, 2009.

D. Kahneman and A. Tversky. The concept of probability in psychological ex-
periments. In D. Kahneman, P. Slovic, and A. Tversky, editors, The concept of
probability in psychological experiments, pages 509–520. Cambridge University
Press, Cambridge, UK, 1982.

Gabriele Kern-Isberner and Thomas Lukasiewicz. Many facets of reason-
ing under uncertainty, inconsistency, vagueness, and preferences: A brief
survey. Künstliche Intelligenz, 2017. URL http://dx.doi.org/10.1007/

s13218-016-0480-6.

F. Knight. Risk, uncertainty and profit. Hart, Schaffner and Marx, New York,
1921.

R. A. Kowalski. The early years of logic programming. Communications of the
ACM, 31:38–42, 1988.

Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic reason-
ing, preferential models and cumulative logics. Artificial intelligence, 44(1):
167–207, 1990.

Lars Lindahl and Jan Odelstad. Normative systems and their revision: An alge-
braic approach. Artificial Intelligence and Law, 11(2-3):81–104, 2003.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

D. Makinson and L. van der Torre. Constraints for input-output logics. Journal
of Philosophical Logic, 30(2):155–185, 2001.

http://arxiv.org/abs/1303.5778
http://dx.doi.org/10.1007/s13218-016-0480-6
http://dx.doi.org/10.1007/s13218-016-0480-6

43

D. Makinson and L. van der Torre. Permissions from an input-output perspec-
tive. Journal of Philosophical Logic, 32(4):391–416, 2003a.

D. Makinson and L. van der Torre. What is input/output logic? In Foundations
of the Formal Sciences II: Applications of Mathematical Logic in Philosophy
and Linguistics, volume 17 of Trends in Logic. Kluwer, 2003b.

David Makinson and Leendert van der Torre. Input/output logics. Journal of
Philosophical Logic, 29(4):383–408, 2000.

John McCarthy. Circumscription: A form of non-monotonic reasoning. Artificial
Intelligence, 13(1):27–39, 1980.

Marvin Minsky. A framework for representing knowledge. Technical Report 306,
AI Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA,
June 1974.

S. Mousavi and G. Gigerenzer. Risk, uncertainty, and heuristics. Journal of
Business Research, 67:1671–1678, 2014.

Martin Mozina, Jure Zabkar, and Ivan Bratko. Argument based machine learn-
ing. Artificial Intelligence, 171(10-15):922–937, 2007.

Nils J Nilsson. Probabilistic logic. Artificial intelligence, 28(1):71–87, 1986.
D. Nute. Defeasible logic. In D.M. Gabbay and J.A. Robinson, editors, Handbook

of Logic in Artificial Intelligence and Logic Programming, volume 3, pages
353–396. Oxford University Press, 1994.

D. Nute, editor. Defeasible deontic logic, volume 263 of Synthese Library. Kluwer,
1997.

Mike Oaksford and Nick Chater. Rationality In An Uncertain World: Essays In
The Cognitive Science Of Human Understanding. Psychology Press, 2004.

J. Pearl. Causality: Models, Reasoning, and Inferece. Cambridge University
Press, Cambridge, UK, 2000.

J. Pijnacker, B. Geurts, M. van Lambalgen, J. Buitelaar, and P. Hagoort. Ex-
ceptions and anomalies: An ERP study on context sensitivity in autism. Neu-
ropsychologia, 48:2940–2951, 2010.

R. Pinosio. A common core shared by logic programming and probabilistic causal
models. in prep.

Henry Prakken and Marek Sergot. Dyadic deontic logic and contrary-to-duty
obligations. In Defeasible deontic logic, pages 223–262. Springer, 1997.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal repre-
sentations by error propagation. In Parallel Distributed Processing, volume 1,
pages 318–362. MIT Press, 1986.

Sandip Sen and Steṕhane Airiau. Emergence of norms through social learning.
In Procs. of the 20th International Joint Conference on Artificial Intelligence
- IJCAI, pages 1507–1512, 2007.

M. Shanahan. Reinventing Shakey. In J. Minker, editor, Logic-based Artificial
Intelligence. Kluwer, Dordrecht, 2002.

Y. Shoham. A semantical approach to non-monotonic logics. In Proceedings of
the Tenth International Joint Conference on Artificial Intelligence (IJCAI)
1987, pages 388–392, 1987.

Yoav Shoham and Moshe Tennenholtz. On the emergence of social conventions:
Modeling, analysis, and simulations. Artificial Intelligence, 94(1-2):139–166,
1997.

44

S. Sloman and D. Lagnado. Causality in thought. The Annual Review of Psy-
chology, 66:1–25, 2015.

K. Stenning and M. van Lambalgen. Human reasoning and Cognitive Science.
MIT Press, Cambridge, MA, 2008.

K. Stenning and M. van Lambalgen. The logical response to a noisy world.
In M. Oaksford, editor, Cognition and Conditionals: Probability and Logic in
Human Thought, pages 85–102. Oxford University Press, Oxford, 2010.

K. Stenning and A. Varga. Many logics for the many things that people do in
reasoning. In L. Ball and V. Thompson, editors, International Handbook of
Thinking and Reasoning. Psychology Press, 2016.

Keith Stenning, Laura Martignon, and Alexandra Varga. Adaptive reasoning:
integrating fast and frugal heuristics with a logic of interpretation. Decision,
2017.

Silvano Colombo Tosatto, Guido Boella, Leendert van der Torre, and Serena
Villata. Abstract normative systems: Semantics and proof theory. In Gerhard
Brewka, Thomas Eiter, and Sheila A. McIlraith, editors, KR. AAAI Press,
2012. ISBN 978-1-57735-560-1.

G. G. Towell and J. W. Shavlik. Knowledge-based artificial neural networks.
Artificial Intelligence, 70(1):119–165, 1994.

Amos Tversky and Daniel Kahneman. Judgment under uncertainty: Heuristics
and biases. Science, 185(4157):1124–1131, 1974.

Amos Tversky and Daniel Kahneman. Extensional versus intuitive reasoning:
The conjunction fallacy in probability judgment. Psychological Review, 90(4):
293, 1983.

L. van der Torre. Reasoning about obligations. PhD thesis, Erasmus University
Rotterdam, 1997.

L. van der Torre. Deontic redundancy: A fundamental challenge for deontic
logic. In Deontic Logic in Computer Science, 10th International Conference
(∆EON 2010), volume 6181 of LNCS, pages 11–32. Springer, 2010.

L. van der Torre and Y. Tan. Deontic update semantics. In P. McNamara and
H. Prakken, editors, Norms, Logics and Information Systems. New Studies on
Deontic Logic and Computer Science. IOS Press, 1999.

M. van Lambalgen and F. Hamm. The proper treatment of events. Blackwell,
Oxford and Boston, 2004.

A. Varga. A formal model of infants’ acquisition of practical knowledge from
observation. PhD thesis, Central European University, Budapest, 2013.

G. H. von Wright. Deontic logic. Mind, 60:1–15, 1951.
Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. CoRR,

abs/1410.3916, 2014. URL http://arxiv.org/abs/1410.3916.

http://arxiv.org/abs/1410.3916

	Reasoning in Non-Probabilistic Uncertainty

