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A FORMALIZATION OF KANT’S TRANSCENDENTAL LOGIC

T. ACHOURIOTI AND M. VAN LAMBALGEN

ILLC/Department of Philosophy, University of Amsterdam

Abstract. Although Kant (1998) envisaged a prominent role for logic in the argumentative
structure of his Critique of Pure Reason, logicians and philosophers have generally judged Kant’s
logic negatively. What Kant called ‘general’ or ‘formal’ logic has been dismissed as a fairly arbitrary
subsystem of first-order logic, and what he called ‘transcendental logic’ is considered to be not a
logic at all: no syntax, no semantics, no definition of validity. Against this, we argue that Kant’s
‘transcendental logic’ is a logic in the strict formal sense, albeit with a semantics and a definition of
validity that are vastly more complex than that of first-order logic. The main technical application
of the formalism developed here is a formal proof that Kant’s Table of Judgements in Section 9
of the Critique of Pure Reason, is indeed, as Kant claimed, complete for the kind of semantics he
had in mind. This result implies that Kant’s ‘general’ logic is after all a distinguished subsystem of
first-order logic, namely what is known as geometric logic.

§1. Introduction. The purpose of this article is to examine from the point of view of
mathematical logic, Kant’s formal logic1 and its relation to what Kant called ‘transcen-
dental logic’. This may seem to be a hopeless enterprise. A typical modern dismissal of
Kant’s formal logic is: ‘terrifyingly narrow-minded and mathematically trivial’2 and of
course every student of logic is aware of the more politely expressed verdicts in Frege’s
Begriffsschrift and Strawson’s The Bounds of Sense. Worse, Kant’s transcendental logic
does not seem to be a logic in the modern sense at all: no syntax, no semantics, no
inferences.

As against the received view, we will argue here that (i) Kant’s formal logic is overly
restrictive only if it is assumed that its underlying semantics is that of classical first-order
logic, whereas Kant’s implied semantics is very different, (ii) the implied semantics, cen-
tered around Kant’s three different notions of object, can be given a precise mathematical
expression, thus leading to a formalized transcendental logic, and (iii) on the proposed
semantics, a logical system very much like Kant’s formal logic is a distinguished fragment
of first-order logic, namely, geometric logic.

What could be the purpose of such a, partly very technical, exercise? To say that the
Critique of Pure Reason3 is notoriously difficult is an understatement. In his attempt to
characterize our cognition of objects, Kant employs a vast array of technical terms that are
insufficiently defined (at least for readers with an analytical mind-set), such as ‘judgement’,

Received: November 5, 2009
1 As expounded briefly in the Critique of Pure Reason (Kant, 1998) and in more detail in the

various series of course notes produced by Kant’s students, and the Jäsche Logik, commissioned
by Kant and compiled from his notes by J.B. Jäsche; for all of which see Kant (1992). We cite the
Critique of Pure Reason in the standard manner, by referring to the page numbers of the first (A)
and second (B) edition, so for example, ‘A57/B81’).

2 Hazen, A. (1999). Logic and analyticity, In Varzi, A. C., editor. The Nature of Logic, Stanford,
CA: CSLI, pp. 79–110.

3 Henceforth abbreviated to CPR.
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A FORMALIZATION OF KANT’S TRANSCENDENTAL LOGIC 255

‘transcendental unity of apperception’, ‘transcendental object’, ‘synthesis’, and ‘schema’.
Perhaps a mathematical formalization, however incomplete, can shed some light on these
concepts and their relations. We are very far from claiming that the formalization presented
exhausts Kant’s concepts; there is hardly a better inducement to modesty than trying to
come to grips with the complexities of CPR, not to mention the secondary literature. But
the formalization may provide a starting point.

One important aim is to attempt to restore logic to its rightful place in the argumentative
structure of CPR. Kant himself was clear about the importance of logic; the so-called
Metaphysical Deduction (Section 10 of CPR) uses the presumed completeness of the
Table of Judgements to argue for the completeness of the Table of Categories, the a priori
concepts that are supposed to underlie our cognition of objects and their relations. The
communis opinio is that the Table of Judgements rests on a thoroughly discredited view of
logic, and this has led to many reductive readings of CPR in which logic hardly figures, if
at all. One notable exception to this trend is Longuenesse’s (1998) Kant and the Capacity
to Judge, whose focal point is the connection between the logical forms of judgements and
acts of the understanding. In fact, reading Longuenesse’s commentary made us aware that
there is much more to Kant’s logic than meets the eye, and the present article can be seen
as an attempt to translate some of her insights into logical terms.4

To our knowledge, ours is the first attempt to shed light on Kant’s logic using the tools
of modern mathematical logic. There exist overviews, such as Stuhlmann-Laeisz’ Kants
Logik (Kitcher, 1976), but these are set firmly in the context of traditional logic. There are
also studies of specific philosophical aspects, such as MacFarlane’s (2000) dissertation on
Kant’s use of the term ‘formal’; or Posy (2003) on the question whether Kant is guilty
of psychologism. A recent article on Kant’s transcendental logic, Rosenkoetter’s (2009)
‘Truth criteria and the very project of a transcendental logic’ interestingly suggests that
transcendental logic is bound up with the search for a truth criterion that traditional logic
cannot deliver (A57–9/B82–4), but there is no hint that transcendental logic can be con-
ceived as a formal logic in its own right. This is precisely what we shall attempt. Before we
delve into the intricacies of Kant scholarship and the sometimes considerable complexity
of the formalization of transcendental logic, we want to summarize why we think such an
exercise can contribute to a better understanding of the first Critique.

(i) Kant describes the role of transcendental logic as

The part of transcendental logic that expounds the elements of
the pure cognition of the understanding and the principles with-
out which no object can be thought at all, is the transcendental
analytic, and at the same time a logic of truth. For no cognition
can contradict it without at the same time losing all content, i.e.
all relation to any object, hence all truth. (A62–3/B87)

The word ‘logic’ need not be understood metaphorically in this passage, neither
did Kant intend it as such: his discussion of logic in A50–7/B74–82 amply shows
this. From a modern perspective, what is stated here is a somewhat outlandish
completeness theorem, as for instance that for Friedman’s quantifier ‘almost all’

4 This is not to say that Longuenesse (1998) is the only work taking the connection between the
logical forms of judgements and acts of the understanding seriously. Two other authors that
come to mind are Reich (1932) and Wolff (1995). Here we shall not discuss the differences in
interpretation between these three authors.
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256 T. ACHOURIOTI AND M. VAN LAMBALGEN

(cf. Steinhorn, 1985): a sentence is consistent with the Friedman axioms if and
only if it has a Borel model, that is, a model where the objects are reals,5 and
the relations are interpreted as (uncountable) Borel subsets of (finite products of)
the reals. The situation is completely analogous here: in both cases one needs
consistency with a given set of axioms to force the language to have the inter-
pretation one is interested in. Since transcendental logic plays such a huge role in
the Transcendental Analytic, it is worth the effort to see whether a formalization
can clarify parts of the argument; much of the effort will go into the formalization
of Kant’s three notions of object.

(ii) A second potential benefit is conceptual clarification. As an example we may take
the notion of judgement, which receives a different characterization in each of
CPR, Prolegomena, and Jäsche Logik. The formalization will illuminate each of
these characterizations and show that in the end they are identical.

(iii) There is however a potentially damning objection to this enterprise. As will be
seen, the mathematical techniques used in proving the completeness theorem for
transcendental logic and the completeness of the Table of Judgements are thor-
oughly modern, without any relation to what Kant could have known. Doesn’t this
invalidate the whole enterprise? What sense is there in attributing a logic to Kant
whose formal properties are so far beyond what was available to him? We believe
a defence can be mounted along the following lines. As an example, consider
Kant and his treatment of the continuum, which is striking because he does not
consider it to be composed of points, as a set theoretic treatment would have it.
Consistent with a constructive treatment, points in the Kantian continuum are only
boundaries or limitations. Kant reasons quite consistently with this conception,
even though its formal treatment, for example, in terms of locales, was of course
not available to him. Similarly, we believe that Kant’s intuition about objects come
very close to a mathematical structure (inverse systems), even though he could not
articulate it in this way. These structures will provide a semantics for the language
of transcendental logic, and as we will see this part is neither very sophisticated
nor does it depart much from what Kant himself writes. Where we really go way
beyond Kant is in using this semantics to prove limitative results, such as that the
Table of Judgement is complete, as Kant conjectured (or rather, asserted). Still, one
can view the formalization as providing a model of Kant’s thinking, thus showing
its consistency and coherence. To us, that seems more profitable than chopping off
a large part of Kant’s thought because it is presumed to be hopelessly outdated.

§2. Kant’s aims and the role of logic. Kant’s overall aim in CPR was to delimit
the scope for metaphysical reflection by arguing that (i) all knowledge starts with percep-
tual experience, (ii) our cognition contributes principles structuring perceptual experience,
principles which are themselves not derived from sensory experience (space, time, and the
Categories), (iii) all our suprasensory knowledge is confined to these principles, which
Kant called ‘synthetic a priori’, meaning that they are informative but that their truth
can be ascertained without recourse to experience, (iv) it is possible to give a complete

5 That is, these objects are much more special as compared to what one gets from the completeness
theorem for first-order logic.
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A FORMALIZATION OF KANT’S TRANSCENDENTAL LOGIC 257

enumeration of the Categories and the associated synthetic a priori principles, and this
yields a precise delimitation of metaphysics.

At this point, it may be instructive to compare Kant to modern cognitive science, in
which the idea that sensory experience needs structuring principles not themselves directly
derived from experience is fairly prominent. The classic statement of this view comes from
Bartlett (1968, p. 1):

Whenever anybody interprets evidence from any source, and his inter-
pretation contains characteristics that cannot be referred wholly to direct
sensory observation or perception, this person thinks. The bother is that
nobody has ever been able to find any case of the human use of evidence
which does not include characters that run beyond what is directly ob-
served by the senses. So, according to this, people think whenever they
do anything at all with evidence. If we adopt that view we very soon find
ourselves looking out upon a boundless and turbulent ocean of problems.

In his famous paper ‘Beyond the information given’, Bruner (1973, p. 224) took this idea
as a starting point, and argued for the importance of coding systems:

We propose that when one goes beyond the information given, one does
so by being able to place the present given in a more generic coding sys-
tem and that one essentially reads off from the coding system additional
information [. . . ].

Examples of such coding systems abound in vision, mostly of a geometrical kind, for
example, it is assumed that real-world surfaces can be described as smooth manifolds in
the mathematical sense (the coding system). This brief excursion should suggest that the
basic outlines of Kant’s approach to cognition have contemporary relevance. For a much
more extensive treatment, the reader should consult Kitcher (Stuhlmann-Laeisz, 1990).

We now come to the role that Kant envisaged for logic in this whole scheme. For
Kant, all cognitive activity is directed toward judgement. This crucial term is easily mis-
understood, especially when one first approaches it through the ‘Table of Judgements’,
which seems to list possible syntactic forms of sentences (universal, particular, singular,
hypothetical, disjunctive, etc.). But for Kant, judgement is first and foremost a cognitive
act, the result of which has one of the listed syntactic forms.6 This act-like character of
judgement is clear if one looks at Kant’s definitions of judgement:

A judgement is the representation of the unity of the consciousness of
various representations ... (Jäsche Logik, Section 17)
A judgement is nothing but the manner in which given cognitions are
brought to the objective unity of apperception (B141).

Common in these definitions is that a judgement is the act of binding together mental
representations; this is what the term ‘unity’ refers to. But where the second definition
differs from the first is that also the aim of judgement is indicated by means of the word
‘objective’, which is Kant’s terminology for ‘having relation to an object’.7 We will return
below to the multiple meanings of the term ‘object’, but for now it suffices to think of ob-
jects of experience. For Kant, objects are not found in experience, but they are constructed

6 Thus a Kantian judgement is very much unlike a proposition in the modern sense.
7 Kant also expresses this by saying that a judgement must be objectively valid.
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258 T. ACHOURIOTI AND M. VAN LAMBALGEN

(‘synthesized’) from sensory materials under the guidance of the Categories, which are
defined as ‘concepts of an object in general, by means of which the intuition of an object
is regarded as determined in respect of one of the logical functions of judgement’ (B128).
It is here that judgement plays an all-important role, since Kant’s idea is that objects are
synthesized through the act of making judgements about them. An example will help here.
Consider the universal judgement ‘All A are B’, which Kant glosses with the help of a
quantifier as ‘To everything x to which A belongs, also B belongs’. Kant inquires what the
presuppositions of such judgements are, and finds that these include the concepts of unity
(to provide units that can act as substitution instances for the variable x), and totality (to
ensure that x can run over the whole extension of A).8 Thus, the conditions that have to be
satisfied to make a universal judgement lead one to consider the Categories of Quantity:
unity, plurality, totality. More generally, Longuenesse (1998, p. 78) writes:

Kant asked himself which logical forms of judgement should be consid-
ered primitive if the original function of judgement is to “bring given
cognitions to the objective unity of apperception”, that is, to relate our
representations to objects. Having discovered that the objectifying func-
tion of these forms provided him with the solution he was seeking to
the problem of the categories,9 Kant retained as primitive only those
forms which he thought indispensable for generating the relation of our
representations to an object ....

Thus Kant’s argument is the following. Cognitive activity consists in binding together rep-
resentations, and always issues in judgements. The mode of binding does not derive from
the senses, but is contributed a priori by cognition (compare Bruner’s ‘coding systems’).
Each primitive judgement form represents a particular a priori manner of binding together,
and conversely, so that we have a one–to–one correspondence between judgement forms
and Categories. Assuming that the list of judgement forms is complete, the corresponding
list of Categories is complete as well. This is the content of the ‘Metaphysical Deduction’,
which, if successful, would provide an exhaustive list of those concepts that legitimately
go beyond sensory experience.

Starting with Section 4 in Frege’s Begriffsschrift, Kant’s logic came under heavy crit-
icism. Viewed from the perspective of the newly developed predicate logic, Kant’s logic
seemed a tiny fragment, devoid of special significance; and of course, Frege’s antipsy-
chologism was inimical to associating cognitive operations to judgement forms. Another
discussion of ‘the trouble with Kant’ can be found in Strawson’s The Bounds of Sense,
which focusses on Kant’s aim to identify primitive logical forms, and to associate these
with primitive functions of the understanding. At least in classical logic, it is impossible
to talk about a distinguished set of primitive logical forms, since judgement forms are
interdefinable (e.g., the hypothetical in terms of the disjunctive and negation).10 Strawson

8 While running over the extension of A, x describes a plurality, which may or may not be
totalisable.

9 The problem being how to provide a complete list of the Categories.
10 At this point one can begin to see what could be wrong with this line of criticism: it is very much

tied to classical logic, and would fail for example, intuitionistic logic. It is quite doubtful, to say
the least, whether Kant adopts a material implication reading of the hypothetical. It is even unclear
whether his disjunctive judgement, with its intended semantics in terms of parts and wholes, fully
conforms to the classical model; see Footnote 41 for more on this.
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A FORMALIZATION OF KANT’S TRANSCENDENTAL LOGIC 259

observes that if one abandons the idea of primitive logical forms, one could say that each
of indefinitely many logical forms gives rise to a Category, which seems absurd; or one
could say that it is logical ideas and not logical forms that are fundamental, in particular

1. the formally atomic proposition (which for Strawson is in subject–predicate form)
2. truth-functional composition11

3. quantification.

This then greatly reduces the number of Categories; what one is left with is that the notions
of particular object and universal kind or character as categories must have application in
a world in which judgements can be made. More importantly, these two categories can be
directly deduced from transcendental considerations, without the detour via the Table of
Judgements.

All in all it seems then as if Kant’s attempt to involve logic in determining ‘the bounds
of sense’ is an utter failure; so why try to resuscitate it? One reason for doing so is that
the various criticisms have completely bypassed issues of semantics. It has been taken for
granted that Kant’s judgement forms can be translated in classical predicate logic, and thus
inherit its semantics. But a moment’s reflection shows that this may well be inappropriate.
The semantics for classical predicate logic is given by models consisting of a domain of
objects over which relations are interpreted; thus here the objects are assumed to be given.
We have just seen however that for Kant, judgements somehow play a role in constituting
objects from sensory material, so that it seems wrong to take objects as given from the
outset. Could it be that by constructing a semantics that is closer to Kant’s intentions, the
judgement forms that he considers somehow do acquire a special status?

§3. Our aims. Kant determined the judgement forms in the Table of Judgements not
by looking at what the logic textbooks of the day had to offer, but

Only insofar as [judgement forms] were selected and organized under the
guidance of the transcendental question (what are the a priori conditions
for the representations of objects in general?) could logical functions of
judgement serve as a guiding thread to the table of categories (Longue-
nesse, 1998, p. 397).

Kant’s procedure can be thought of along the lines of the ‘method of analysis and synthesis’
in geometry: in the analytic phase one assumes that one knows precisely how objects are
constituted and one determines from this the logical forms of judgements that can have
relation to an object, in so doing providing a transcendental justification of the Table of
Judgements; in the synthetic phase (which takes up most of the Transcendental Deduction)
one reverses the argument and shows how logical forms of judgement contribute to the
constitution of objects.

Our argument is focussed on the first, ‘analytic’, part. We consider a subset of ‘the
a priori conditions for the representations of objects in general’ (as discussed by Kant)
that is sufficient to generate an abstract mathematical representation of Kant’s view of
objects—as will be seen below for this purpose we use (abstract descriptions of) the three
syntheses of the A Deduction (A99–104) and the ‘unity of self-consciousness’ (A109).
The mathematical representation of Kant’s view of objects then provides a semantics for

11 But see Footnote 10.
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260 T. ACHOURIOTI AND M. VAN LAMBALGEN

judgements that allows one to ask the question: ‘which logical forms of judgements are
capable of having ‘relation to an object’?’. Our main technical result is that this class of
judgement forms consists of all and only those formulas that can be written as conjunctions
of geometric implications, that is, of formulas of the form ∀x̄(θ(x̄) → ψ(x̄)), where θ
is a conjunction of atomic formulas, and ψ is constructed from atomic formulas using
only ∨, ∧, ∃, ⊥.12 No judgement form outside this class can claim objective validity.13

In this sense there is a completeness result like the one Kant claimed for his Table of
Judgements; and it is similarly based on transcendental considerations. At first sight it may
seem that the class of judgement forms we have isolated extends the Table of Judgements:
after all, it allows (some) quantifier combinations of the form ∀∃, whereas Kant’s Table
apparently doesn’t. We shall argue, however, that this difference is spurious, because Kant’s
examples, especially in his treatment of causality, show that what he calls a ‘hypothetical’
judgement can be as complex as geometric implications. And clearly the paradigm example
of a synthetic a priori judgement

Everything that happens (begins to be) presupposes something which it
follows in accordance with a rule. (A189)

is a geometric implication.
Our main mathematical result does not answer the ‘synthetic’ question: ‘how do judge-

ment forms enable us to constitute empirical objects as substitution instances of the “x”
in judgements ?’.14 This involves looking at judgement forms, to assess their contribu-
tion to the constitution of objects. But before the how-question can be answered, first
those judgement forms need to be identified for which the how-question can be asked
at all.

§4. Kant’s logic: general and transcendental. The key to such an enterprise is that
judgements in Kant’s sense participate in two kinds of logics: general logic and transcen-
dental logic.

4.1. General logic.

[G]eneral logic abstracts from all the contents of the cognition of the
understanding and of the difference of its objects, and has to do with
nothing but the mere form of thinking. (A54/B78)

Kant emphasizes time and again the formality of general logic, which contains ‘absolutely
necessary rules of thinking regardless of difference of objects’. In particular, it abstracts
from empirical content and makes no distinction between imaginary and real or actual
objects. Kant’s general logic is treated in the notes taken by his students and the Jäsche
Logik and treats such topics as:15

1. forms of judgements (categorical, hypothetical, disjunctive, with various subdivi-
sions)

12 The relevant definitions will be given in Section §9.
13 For the meaning of this term, compare Footnote 7.
14 Compare p. 258 for Kant’s introduction of bound variables.
15 We do not discuss Kant’s treatment of concepts here.
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2. the inferences in which these judgements participate (immediate inferences such as
conversion of subject and predicate; and inferences of reason such as syllogisms,
modus ponens/modus tollens, disjunctive syllogism)

3. the principle on which inferences of reason are based: the major premise must
be a ‘universal rule’ and the minor premise must express subsumption under the
condition of the rule.

Categorical judgements are judgements in subject–predicate form, combined with quan-
tifiers and optional negation: (affirmative) all A are B, some A are B, (negative) no A are
B, some A are not B, (infinite) all A are non-B, some A are non-B, etcetera.16 Categorical
judgements may occur as premises and as conclusion in syllogisms.

Disjunctive judgements are not what one would think, judgements of the form p ∨ q.
The Jäsche Logik provides the following definition:

A judgement is disjunctive if the parts of the sphere of a given con-
cept determine one another in the whole or toward a whole as comple-
ments. . . [A]ll disjunctive judgements represent various judgements as
in the community of a sphere. . . (Jäsche Logik, Section 27, Section 28)
(Kant, 1992, pp. 602–603)

As example Kant provides

Every triangle is either right-angled or not right-angled.

Thus the logical form is something like ∀x(C(x) → A(x) ∨ B(x)), where C represents
the whole, A, B its parts; here it is not immediately clear whether the parts can be taken
to exist outside the context of the whole. In our formalization, we will act as if the ∨ is
classical disjunction; but see Footnote 41.

It would similarly be a mistake to identify Kant’s hypothetical judgements with a condi-
tional p → q , let alone material implication as defined by its truth table. A few examples
from Kant will make this clear. In the context of a discussion of the possible temporal
relations between cause and effect Kant writes in CPR:

If I consider a ball that lies on a stuffed pillow and makes a dent in it as
a cause, it is simultaneous with its effect. (A203/B246)

The hypothetical that can be distilled from this passage is

If a ball lies on a stuffed pillow, it makes a dent in that pillow.

From this we see that Kant needs relations, not just unary predicates, to formulate his
causal hypotheticals, and also that the logical form of this particular causal hypothetical is
what we called above (p. 260) geometric implications.

We now give an extended quote from the Prolegomena Section29 which provides an-
other example of a hypothetical judgement that really has geometric implication form, and
which also shows that causality is related to the rule-like character of the hypothetical,
which, as we shall see in Section 9.1, means that the existential quantifier(s) in the geomet-
ric implication can be replaced by a concrete function.

16 Kant thus makes a distinction between sentence negation (negative judgements) and predicate
negation (infinite judgements).
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262 T. ACHOURIOTI AND M. VAN LAMBALGEN

It is, however, possible that in perception a rule of relation will be found,
which says this: that a certain appearance is constantly followed by an-
other (though not the reverse); and this is a case for me to use a hypo-
thetical judgement and, e.g., to say: If a body is illuminated by the sun
for long enough, it becomes warm. Here there is of course not yet the
necessity of connection, hence not yet the concept of cause. But I con-
tinue on, and say: if the above proposition, which is merely a subjective
connection of perceptions, is to be a proposition of experience, then it
must be regarded as necessarily and universally valid. But a proposition
of this sort would be: The sun through its light is the cause of the warmth.
The foregoing empirical rule is now regarded as a law, and indeed as
valid not merely of appearances, but of them on behalf of a possible
experience, which requires universally and therefore necessarily valid
rules [. . . ] the concept of a cause indicates a condition that in no way
attaches to things, but only to experience, namely that experience can
be an objectively valid cognition of appearances and their sequence in
time only insofar as the antecedent appearance can be connected with the
subsequent one according to the rule of hypothetical judgements (Kant,
2002, p. 105).

The logical form of the first hypothetical is something like

If x is illuminated by y between time t and time s and s − t > d and the
temperature of x at t is v , then there exists a w such that the temperature
of x at s is v + w and v + w > c,

where d is the criterion value for ‘long enough’ and c a criterion value for ‘warm’. Again
we see the importance of relations in the logical form of hypotheticals, which is that of
geometric implications.17 One last remark before we move on to inferences. Kant makes a
distinction between categorical judgements ‘To all x to which A belongs, also B belongs’
and hypothetical judgements ‘if x is A then x is B’. The difference is that in the latter
judgement type it is not asserted that x belongs to A, whereas that is asserted in the
former type. This difference can be accounted for by working in a many-sorted logic where
the subject term of a categorical judgement refers to a separate sort, always taken to be
nonempty. This does not affect the technical results given below.

Moving now to inferences, we see that general logic contains a specific set of inference
rules, not a general semantic consequence relation. Simplifying a bit, one can say that the
inference rules are like elimination rules in natural deduction. Corresponding introduction
rules are lacking; for example, there are no formal introduction rules for the hypothetical
or the disjunctive.18 The conditions for asserting a judgement are not treated in general
logic, but in transcendental logic, about which more will be said below. Before we do so

17 A full treatment of causality would involve structures containing events and times (as well as
axioms governing these), whereas below we consider only the case where quantifiers range over
objects. Nevertheless we hope the message is clear: there is considerable logical complexity
(including quantifiers) hidden in Kant’s notion of a hypothetical judgement.

18 In fact the usual introduction rule for ∨ would be incorrect on Kant’s interpretation of the
disjunction, since it is tantamount to the possibility to create wholes by arbitrarily putting together
parts.
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however, we add a few remarks on Kant’s formal theory of truth, which also belongs to
general logic.
Kant lists three ‘formal criteria of truth’ (Jäsche Logik, Kant, 1992, p. 560):

(1) the principle of [non-]contradiction

(2) the principle of sufficient reason ‘on which rests the (logical) actuality of a cogni-
tion, the fact that it is grounded, as material for assertoric judgements’

(3) the principle of excluded middle.

The second principle seems out of place in logic, especially if one reads what Kant writes
on the previous page

If all the consequences of a cognition are true, then the cognition is true
too. For if there were something false in the cognition, then there would
have to be a false consequence too.
From the consequence, then, we may infer to a ground, but without
being able to determine this ground. Only from the complex of all con-
sequences can one infer to a determinate ground, infer that it is the true
ground.

This seems a blatant fallacy, but the principle will make a surprising appearance in our
formal treatment of Kant’s transcendental logic.

4.2. Transcendental logic. We began this section by saying that judgements partici-
pate in two logics simultaneously: general and transcendental. About the latter, Kant says
the following:

a science of pure understanding and of the pure cognition of reason, by
means of which we think objects completely a priori. Such a science,
which would determine the origin, the domain, and the objective validity
of such cognitions, would have to be called transcendental logic since
it has to do merely with the laws of the understanding and reason, but
solely insofar as they are related to objects a priori and not, as in the
case of general logic, to empirical as well as pure cognitions of reason
without distinction. (A57/B81–2)

Roughly speaking, whereas general logic is concerned merely with inference rules, what
transcendental logic adds to this is a semantics in terms of objects. At first sight this may
seem rather trivial: after all, first-order predicate logic has a semantics in terms of domains
of objects and relations defined on these domains, and thus there seems to be no ground
for our earlier claim, when discussing Frege’s and Strawson’s criticism, that Kant’s logic is
different from first-order predicate logic. But there is a vast difference between the notion
of object as it occurs in modern semantics and in Kant’s logic. In the former, objects are
mathematical entities supplied by the metatheory, usually some version of set theory. These
objects have no internal structure, at least not for the purposes of the model theory. Kant’s
notions of object, as they occur in the semantics furnished by transcendental logic, are
very different. For instance, there are ‘objects of experience’, somehow constructed out of
sensory material by ‘the laws of the understanding and reason’. Transcendental logic deals
with a priori and completely general principles which govern the construction of objects,
and relate judgements to objects so that we may come to speak of true judgements. Since
transcendental logic deals with construction of objects of experience, for the purposes of
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this logic objects must have internal structure; and a large part of this article will be taken
up by a discussion of what that structure is.

§5. ‘The rules for the pure thinking of an object’. There appears to be an internal
inconsistency in Kant’s notion of an object, which follows from his treatment of causality.
Kant was convinced by Hume’s analysis of causality, showing that it cannot be inherent
in the phenomena. Kant’s proposal was to make causality a category, a ‘pure concept of
the understanding’, which is instrumental in constituting phenomena but which cannot
be derived from them. Now this seems to conflict with the natural tendency to say that
representations within us are caused by objects outside us, that ‘objects affect sensibility’.
For in this case one extends the category of causality beyond its legitimate domain of ap-
plication. We will adopt Longuenesse’s analysis here. She proposes, following A92/B125,
that Kant replaces the necessity inherent in causality by another form of necessity: instead
of ‘the object causes representations within us’, one now has ‘the object alone makes the
representation possible’, or ‘without the representation the object is impossible’. Moreover,
and most importantly, this form of necessity is internalized, what Longuenesse calls ‘inter-
nalisation within representation’, so that ‘the object’ as it occurs in the statement ‘without
the representation the object is impossible’ is itself a kind of representation. Here is a quote
from CPR making this point:

It is necessary to make understood what is meant by the expression
an object of representations. [A]ppearances themselves are nothing but
sensible representations, which must not be regarded in themselves . . . as
objects (outside the power of representation). What does one mean, then,
if one speaks of an object corresponding to and therefore also distinct
from the cognition? It is easy to see that this object must be thought of
only as something general = X, since outside of our cognition we have
nothing that we could set over against this cognition as corresponding to
it. (A104)

We thus have the following slightly paradoxical situation: we have to relate appearances
to objects represented internally as existing outside us. How Kant conceived of this re-
markable feat will be our next topic.

§6. Objects of appearance, objects of experience, transcendental objects. Longue-
nesse’s interpretation hinges on an analysis of what Kant might mean when he glosses
a categorical judgement such as ‘all A are B’ as ‘To all x to which A belongs, B also
belongs’. It is not open to Kant to let the variable x run over a particular set theoretically
defined collection of objects; x must run over objects as he conceives them, that is, as par-
ticular internal representations. But now the problem arises that Kant has several notions of
object: object of appearance, object of experience, and transcendental object, and in some
way the variable x is concerned with all three. In a footnote defending her interpretation
against Allison’s, Longuenesse (1998, p. 111) puts this as follows:

[R]eference to an object represented by the term ‘x’ in the logical form
of judgement does have as one of its components reference to an inde-
pendent object leading us to seek coherence among our representations
of it and allowing us to think of the connection of representations as in
some sense necessary, “even if the judgement is empirical and therefore
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contingent”, which is precisely the role Kant assigned to reference to the
“transcendental object = x” in the A Deduction.

This seems to be saying that we should think of a variable x as referring to different types
of objects simultaneously. This is a very unusual understanding of variables, and it will be
one of our main tasks to make this idea precise. In order to do so, we will briefly introduce
the three kinds of objects.

In Section 2 we remarked that Kant’s theory of cognition can be captured by Bruner’s
phrase ‘going beyond the information given’. Kant attempts to show in the A Deduction
that the psychological data philosophers of empiricist persuasion typically assume are
already the result of mental operations. Receptivity by itself is not enough, but what it
yields must be processed in order to be used by the understanding, which is concerned
with relating cognitions to objects. The general term for these processes is synthesis:

By synthesis in the most general sense ... I understand the action of
putting different representations together with each other and compre-
hending their manifoldness in one cognition. (A77/B103)

6.1. Synthesis of apprehension in intuition. The A Deduction treats three such syn-
theses, which to a first approximation can be thought of as operating one after the other.
The purpose of the first synthesis, the ‘synthesis of apprehension in intuition’, is to prepare
the manifold received in intuition for further processing by representing it internally as a
manifold of spatial parts and sensory qualities, together with the manner in which these are
bound together:

Every intuition contains a manifold in itself, which however would not
be presented as such if the mind did not distinguish the time in the suc-
cession of impressions on one another; for as contained in one moment
no representation can ever be other than absolute unity. Now in order
for unity of intuition to come from this manifold ... it is necessary first
to run through and then take together this manifoldness, which action I
shall call the synthesis of apprehension ...(A99)

A concrete example of this process of ‘run through and take together’ is given later, in
B162, where Kant envisages ‘mak[ing] the empirical intuition of a house into perception
through apprehension of its manifold’ by, as it were, drawing its shape, for example, by a
temporal process.

Although this first synthesis has made much material available for further processing
(spatial parts, sensory qualities), by itself it does not produce objects (always thought of
as internal representations); it does not distinguish between true cognition of objects and
hallucinations. For this, additional mental processes are necessary, which are concerned
with various forms of stability that objects must have.

6.2. Synthesis of reproduction in imagination. To begin with, experience presup-
poses the reproducibility of appearances, as can be seen from the following example,
especially when considered in conjunction with the example of the house (B162) just given:

Now it is obvious that if I draw a line in thought, or think of the time from
one noon to the next, or even want to represent a certain number to my-
self, I must necessarily first grasp one of these manifold representations
after another in my thoughts. But if I were always to lose the preceding
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representations (the first parts of the line . . . ) from my thoughts and not
reproduce them when I proceed to the following ones, then no whole
representation . . . could ever arise. (A102)

Thus if one is engaged in mentally tracing the outline of the back of a house but in the
meantime the representation resulting from tracing the front has dropped out of memory, no
experience of the house will ever arise. In other words, to experience an object qua object,
at any particular moment sensory experience has to go hand in hand with the reproduction
of those aspects of the object that cannot be perceived at that very moment. Longuenesse
(1998, p. 42) puts this as follows: ‘[T]he aim to represent a whole guides every associative
reproduction of the imagination.’ It is only through the synthesis effected by reproduction
in imagination that we can strive toward complete knowledge, because at any particular
moment sensory knowledge is limited. At the same time the aim to represent a whole is
precisely that, an aim, because complete knowledge is beyond our reach.

The preceding two syntheses (which are ‘inseparably combined’ (A102)) yield objects
of appearance. In the formal model to be presented in Section 7 objects of appearance
will constitute the domains of models. Predicates are introduced through the following
considerations.

6.3. Synthesis of recognition in a concept.

Without consciousness that which we think is the very same as what we
thought a moment before, all reproduction in the series of representations
would be in vain. For it would be a new representation in our current
state. (A103)

It is the concept’s job to generate the consciousness of the generic identity between the
reproduced representation and all those preceding it (Longuenesse, 1998, p. 46), that is,
to recognize a representation as being of a certain kind. Kant has an interesting dual view
of concepts: they are on the one hand intensional rules (or algorithms) to be applied to
objects of appearance, on the other hand the extensions generated by the applications of
the rules. If objects of appearance can be stably classified as being of a certain kind, they are
called ‘determinate objects of experience’, where ‘determinate’ here means ‘determined by
concepts’.

6.4. From transcendental unity of apperception to transcendental object. We are not
yet done, however; there is another kind of stability we have to consider. Even though all
our representations are internal, there is sometimes a stable coherence among them, and
this leads us to think that there is an object ‘behind’ the representations that is responsible
for the coherence. But we can know nothing about objects ‘behind’ representations, and the
question arises how such an object can be internalized as a particular kind of representation.
The answer is given in the following long sequence of quotes:

We find however, that our thought of the relation of all cognition to its
object carries something of necessity to it [. . . ] since insofar as they
are to relate to an object our cognitions must also necessarily agree
with each other in relation to it, i.e., they must have that unity that
constitutes the concept of an object. It is clear however, that since we
have to do only with the manifold of our representations, and that X
which corresponds with them (the object) [. . . ] is nothing for us, the
unity that the object makes necessary can be nothing other than the
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formal unity of the consciousness in the synthesis of the manifold of
representations. (A104–5)

Now no cognitions can occur in us, no connection and unity among
them, without that unity of consciousness that precedes all data of the
intuitions, and in relation to which all representation of objects is alone
possible. This pure, original, unchanging consciousness I will now name
transcendental apprehension. (A107)

[A]ppearances are not things in themselves, but themselves only repre-
sentations, which in turn have their object, which therefore cannot be fur-
ther intuited by us, and that may therefore be named the non-empirical,
i.e., the transcendental object = X. The pure concept of this transcen-
dental object (which in reality throughout all our cognition is always
one and the same = X), is what can alone confer upon all our empirical
concepts in general relation to an object, i.e., objective validity. [T]his
concept cannot contain any determinate intuition at all, and therefore
concerns nothing but that unity which must be encountered in a manifold
of cognition insofar as it stands in relation to an object. This relation,
however, is nothing other than the necessary unity of self-consciousness,
thus also of the synthesis of the manifold, through a common function
of the mind for combining it in one representation. (A109)

Hence, on the one hand the transcendental object is responsible for grasping objects of
experience as the same object, on the other hand the transcendental object is an internal
representation of the ‘necessary unity of self-consciousness’. To come back to the starting
point of this section, the variable x must refer to objects of experience as well as to the
transcendental object, and the latter must somehow be constructed from the ‘unity of self-
consciousness’.

We seem to have strayed very far from logical considerations. It will turn out however,
that it is possible to give a formalization of transcendental logic that captures the formal
relationships that are hinted at by Kant in the preceding quotes. The first step toward
formalization will be to propose semantic structures that can replace first-order models
with their inappropriate notion of object; these will be inverse systems of first-order models
and their limits. We will then show how to interpret formulas on such structures, in so doing
making sense of the multiple interpretations of the same variable that Longuenesse believes
is essential. Once we have done so, we can set up a proof system for transcendental logic
and prove its soundness and completeness. A by-product of the completeness proof is that
there is a sense in which Kant’s Table of Judgements is complete.

§7. Structures for objects. The purpose of the structure to be presented is to give an
account of Kant’s notion of object, in terms of formal counterparts of the three syntheses,
the transcendental object, and unity of self-consciousness. This leaves out important top-
ics of Kant’s transcendental logic, notably his theory of causality. The advantage of this
restriction is that in our chosen domain, the structures necessary for formalization already
exist, namely inverse systems.

To make the complexity of the construction somewhat more manageable, we split it in
two parts. We first deal with inverse systems of sets and the relation of these inverse systems
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to the first two syntheses. We then consider inverse systems of models, that is, of sets with
relations defined on them, and we relate these to the third synthesis. We emphasize that
we introduce this division only for expository purposes; in reality the three syntheses are
inseparably linked.

7.1. Inverse systems of sets and synthesis. An inverse system is a collection of sets
which are connected by mappings. We first give the pertinent definitions, then relate these
to abstract properties of synthesis.

DEFINITION 7.1. A directed set is a set T together with an ordering relation ≤ such
that
(1) ≤ is a partial order, that is, transitive, reflexive, antisymmetric
(2) ≤ is directed, that is, for any s, t ∈ T there is r ∈ T with s, t ≤ r .

DEFINITION 7.2. An inverse system indexed by T is a set D = {Ds |s ∈ T } together
with a family of mappings F = {hst |s ≥ t, hst : Ds −→ Dt }. The mappings in F must
satisfy the coherence requirement that if s ≥ t ≥ r , htr ◦ hst = hsr .

7.1.1. Interpretation of the index set In our case, the index set represents some abstract
properties of synthesis.19 Recall that the ‘synthesis of apprehension in intuition’ proceeds
by a ‘running through and holding together of the manifold’ and is thus a process that takes
place in time. We may now think of an index s ∈ T as an interval of time available for the
process of ‘running through and holding together’. More formally, s can be taken to be a
set of instants or events, ordered by a ‘precedes’ relation; the relation t ≤ s then stands
for: t is a substructure of s. It is immediate that on this interpretation ≤ is a partial order.
The directedness is related to what Kant called ‘the formal unity of the consciousness in
the synthesis of the manifold of representations’ (A105) or ‘the necessary unity of self-
consciousness, thus also of the synthesis of the manifold, through a common function of
the mind for combining it in one representation’ (A109)—the requirement that ‘for any
s, t ∈ T there is r ∈ T with s, t ≤ r ’ creates the formal conditions for combining the
syntheses executed during s and t in one representation, coded by r .20

7.1.2. Interpretation of the Ds and the mappings hst : Ds −→ Dt An object in Ds

can thought of as a possible ‘indeterminate object of empirical intuition’ synthesized in the
interval s. If s ≥ t , the mapping hst : Ds −→ Dt expresses a consistency requirement: if
d ∈ Ds represents an indeterminate object of empirical intuition synthesized in interval s,
so that a particular manifold of features can be ‘run through and held together’ during s,
some indeterminate object of empirical intuition must already be synthesizable by ‘running
through and holding together’ in interval t , for example, by combining a subset of the
features characterizing d. This interpretation justifies the coherence condition s ≥ t ≥ r ,
htr ◦ hst = hsr : the synthesis obtained from first restricting the interval available for
‘running through and holding together’ to interval t , and then to interval r should not
differ from the synthesis obtained by restricting to r directly.

We do not put any further requirements on the mappings hst : Ds −→ Dt , such
as surjectivity or injectivity. Some indeterminate object of experience in Dt may have

19 At this stage the reader should think of syntheses executed by a single consciousness. This will be
generalized later to several cognitive agents when we come to consider Kant’s notion of ‘objective
validity’.

20 Of necessity, this discussion is very brief, although it marks the point where the Transcendental
Aesthetic comes into contact with the Transcendental Analytic. We will offer a much more
detailed explanation elsewhere.
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disappeared in Ds : more time for ‘running through and holding together’ may actually
yield fewer features that can be combined.21 Thus we do not require the mappings to be
surjective. It may also happen that an indeterminate object of experience in Dt corresponds
to two or more of such objects in Ds , as when a building viewed from afar upon closer
inspection turns out to be composed of two spatially separated buildings; thus the mappings
need not be injective.

The interaction of the directedness of the index set and the mappings hst is of some
interest. If r ≥ s, t there are mappings hrs : Dr −→ Ds and hrt : Ds −→ Dt . Each
‘indeterminate object of empirical intuition’ in d ∈ Dr can be seen as a synthesis of such
objects hrs(d) ∈ Ds and hrt (d) ∈ Dt . For example, the ‘manifold of a house’ (B162) can
be viewed as synthesized from a ‘manifold of the front’ and a ‘manifold of the back’. (Note
that we do not require that every pair of objects in Dt and Ds is unifiable in this sense.) The
operation just described has some of the characteristics of the synthesis of reproduction in
imagination: the fact that the front of the house can be unified with the back to produce a
coherent object presupposes that the front can be reproduced as it is while we are staring
at the back. The mappings hrs : Dr −→ Ds and hrt : Ds −→ Dt capture the idea that
d ∈ Dr arises from reproductions of hrs(d) and hrt (d) in r .

7.2. Inverse limit of an inverse system of sets. In the quote from A109, repeated below
for convenience, Kant talks about the essential connection between the ‘necessary unity of
self-consciousness’ and the transcendental object:

Appearances are not things in themselves, but themselves only represen-
tations, which in turn have their object, which therefore cannot be further
intuited by us, and that may therefore be named the non-empirical, i.e.,
the transcendental object = X. The pure concept of this transcenden-
tal object (which in reality throughout all our cognition is always one
and the same = X), is what can alone confer upon all our empirical
concepts in general relation to an object, i.e., objective validity. This
concept cannot contain any determinate intuition at all, and therefore
concerns nothing but that unity which must be encountered in a manifold
of cognition insofar as it stands in relation to an object. This relation,
however, is nothing other than the necessary unity of self-consciousness,
thus also of the synthesis of the manifold, through a common function
of the mind for combining it in one representation. (A109)

As we remarked above, this connection seems mysterious: ‘unity of self-consciousness’
and ‘transcendental object’ seem to belong to completely different conceptual domains.
But if one agrees to represent unity of self-consciousness via a directed set of indices,
there is a connection with the transcendental object, which is given through the following
definition and Theorem 7.5 below.

DEFINITION 7.3. Let (T, {Ds | s ∈ T },F) be an inverse system. Let D ⊆ �s∈T Ds the
set of all ξ such that for s ≥ t , hst (ξ(s)) = ξ(t). Such ξ will be called threads. Then D is
called the inverse limit of the given inverse system.

21 For an empirical illustration of this phenomenon, one can think of Treisman’s ‘illusory
conjunctions’(Treisman & Gelade, 1980).
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We propose to identify the transcendental object of A109 with the inverse limit as just
defined. Before we state the properties of inverse limits that we shall use in the sequel,
we give an excerpt from a letter from Béatrice Longuenesse (quoted with permission) that
sheds considerable light on the notion of transcendental object:

I would say ”the transcendental object” should be taken as a mass noun
referring to whatever it is that our intuition gives us access to without
giving us any knowledge of it except as an appearance. The singular term
”the transcendental object” is not of the same nature as the singular term
as we would use it to refer to an empirical object, e.g.: ”the dictionary
sitting on my desk right now.” [One must not] think of ”the transcen-
dental object” as a count noun, or of transcendental object(s) as falling
under categories of unity and plurality just like empirical objects do. The
situation in fact is: thinking of our judgments as ranging over empirical
objects is also thinking of our judgments as being about *some object
=X*, whatever it is, however it is to be sliced up, that our empirical
objects represent for us. To say that that object is ”the same through out
our cognition” to say that there is one and the same stuff out there that
our cognitions try to capture and do capture by way of giving values to
the variable ’x’ in our judgments.22

This makes clear that the transcendental object must be represented as some thing,
otherwise it couldn’t be ‘sliced up’; hence considered as a classical set it must be nonempty.
Now, without additional conditions, it is possible that the inverse limit is nonempty, so
that in this formal model there wouldn’t be any ‘stuff’ for our cognition to capture. The
comparison of the transcendental object with a mass noun suggests however that our
formalization of the transcendental object as a set is not completely adequate; it would
be more appropriate to choose a whole/part template. Technically, this would require a
category theoretic formalization, but this would compound the expository problems. We
therefore continue to work in a set theoretic framework, in which we have one tran-
scendental object, the nonempty inverse limit, together with elements of the inverse
limit, to be called transcendental elements, introducing a term not to be found
in CPR.

If the transcendental object viewed as inverse limit is nonempty, it provides ‘coherence
among our representations’ in the following sense

22 The continuation of the letter shows that there are constructive aspects to the notion of the
transcendental object: “[Thus], it is true that if given the choice, the transcendental object should
be thought about on the model of part/whole *rather than* set/elements and in that sense, is
analogous to the Kantian totum continuum of space. In fact this comparison comes up when
Kant discusses the Transcendental Ideal, which is thought of as a whole of reality where whole
precedes parts just as in space, as an ‘infinite given magnitude,’ the whole precedes parts. But,
it is probably even truer that strictly speaking, the transcendental object—the object = X that
‘corresponds to’ our intuitions—transcends the distinction between the two ways of slicing up
reality: whole/part *or* set/elements. For the fact that there is an *alternative* between these two
ways of slicing up reality (roughly: whole/part being characteristic of intuition, set/element of
understanding) is characteristic of our own, finite understanding, which does not intuit: for which
intuition and concepts are two irretrievably separate modes of representation, which complement
each other in our cognition.”
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LEMMA 7.4. Let (T, {Ds | s ∈ T },F) be an inverse system with nonempty inverse limit
D. Then for each s, t ∈ T with s ≥ t there exists a mapping πs : D −→ Ds satisfying
hst ◦ πs = πt .

Proof. Given a thread ξ ∈ D, put πs(ξ) = ξs . �
That is, there is a single transcendental object (the inverse limit) to which all intuitions

(the Ds) relate. At the same time,‘reference to an object represented by the term ‘x’ in the
logical form of judgement does have as one of its components reference to an independent
object’, in the sense that for some d, assignment of d to x can be thought of as deriving
from an assignment to x of an ‘independent object’ that projects to x .

Although, as we remarked above, the elements of the transcendental object have no
Kantian meaning per se, it is useful to think of them in the following manner. Recall
that the Ds represent the possible objects of empirical intuition. Intuitively speaking, one
can have many different intuitions of the same ‘object’; think of all the different possible
views of a house. There is no single intuition that contains within itself all the different
intuitions one can have of the house; nevertheless these intuitions somehow form a unity.
A transcendental element in the sense just defined is not an object of empirical intuition,
since it is not an element of a Ds , but in virtue of the previous lemma it binds together
objects of empirical intuition into a unity.

Our next concern is the nonemptiness of the transcendental object. In the general case
that we study here, in which the mappings hst need not be surjective, it is not guaran-
teed that the inverse limit is nonempty. If we require that the indexed sets Ds are finite,
nonemptiness can be proved, as we shall see in a moment. There is a Kantian justification
for this assumption, which has to with the connection between the Categories of Quantity
and finite numbers, provided by the so-called Schemata. In a nutshell, the idea is this.
The universal judgement ‘all A are B’ corresponds to the Category of Totality: to make
such a judgement one has to be certain that one has considered everything that falls under
the extension of A. Kant conceives of this ‘considering everything that falls under the
extension of A’ as a serial process, taking place in time, that is, one must enumerate the
objects falling under the extension of A. For Kant, the enumeration yields a totality only if
the extension enumerated is finite.23

The existence proof that we are about to give will make clear why there is an essential
connection between the nonemptiness of the transcendental object and the directedness of
the index set (the ‘unity of self-consciousness’).

THEOREM 7.5. Let (T, {Ds | s ∈ T },F) be an inverse system where each Ds is finite.
Then the inverse limit is nonempty.

Proof. For each s ∈ T provide Ds with the discrete topology. Form the Cartesian
product �s∈T Ds ; this product is nonempty by Tychonov’s theorem. We have to show that
the subset of �s∈T Ds consisting of the threads is nonempty as well.
Define for each s ∈ T ,

As = {ξ ∈ �s∈T Ds | ∀t ≤ s hst (ξ(s)) = ξ(t)}
=

⋂
t≤s

{ξ ∈ �s∈T Ds | hst (ξ(s)) = ξ(t)}.

23 For the full argument, we refer to Longuenesse (1998, chap. 9).
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The last representation shows, using the definition of inverse system, that each As is a
closed nonempty set. We show that the collection of sets As has the finite intersection
property. Consider As and At . We have to show that As ∩ At is nonempty. By directedness
of T , choose r ≥ s, t then Ar ⊆ As ∩ At , which shows that As ∩ At is nonempty.
Analogously for all finite cardinalities.
Hence by compactness, the collection of threads,

⋂
s∈T As , is nonempty. �

7.3. Inverse systems of models and the third synthesis. To formalize the ‘synthesis of
recognition in a concept’, we represent concepts as relations on the indexed sets of an in-
verse system. This additional structure entails additional requirements on the mappings hst .

DEFINITION 7.6. Let T be a directed set. An inverse system of models indexed by T
is a family of first-order models {Ms |s ∈ T } together with a family of homomorphisms
F = {hst |s ≥ t, hst : Ms −→ Mt }. The mappings in F must satisfy the coherence
requirement that if s ≥ t ≥ r , htr ◦hst = hsr . That hst :Ms −→Mt is a homomorphism
means thatMs |� R(a1, a2, . . .) impliesMt |� R(hst (a1), hst (a2), . . .).24

Bearing in mind that s > t means that in index s there is more time for synthesis than
in index t , the homomorphism condition means that if an object of appearance a in Ms

satisfies the concept C , its image hst (a) inMt will also do so; but if hst (a) satisfies C in
Mt , the extra time available in s may lead one to reject C(a) inMs .

For expository reasons we introduced inverse systems of sets before defining inverse
systems of models. This does not mean that first the mappings hst are fixed and that
concepts have to conform to these via the homomorphism condition; on the contrary, there
exists a mutual dependence between concepts and mappings, reflecting Kant’s view that
concepts play a constitutive role with regard to objects.

7.4. Inverse systems of models and their inverse limits. We are now ready to introduce
the main definition, that will ultimately allow us to set up a sound and complete proof
system for transcendental logic.

DEFINITION 7.7. Let (T, {Ms | s ∈ T },F) be an inverse system. Let Ds be the domain
of Ms . Let D ⊆ �s∈T Ds the set of all ξ such that for s ≥ t , hst (ξ(s)) = ξ(t). Define
a model M with domain D by putting M |� R(ξ1, ξ2, . . .) if for all s ∈ T , Ms |�
R(ξ1

s , ξ2
s , . . .).M is called the inverse limit of the given inverse system.

THEOREM 7.8. Let (T, {Ms | s ∈ T },F) be an inverse system of models where each
domain Ds is finite. Then the inverse limit is nonempty.

LEMMA 7.9. Let (T, {Ms | s ∈ T },F) be an inverse system of models with nonempty
inverse limit M. Then the projection πs defined by ξ ∈ M �→ πs(ξ) := ξ(s) is a
homomorphism that in addition satisfies for s ≥ t: hst (πs(ξ)) = πt (ξ).

§8. A language for objects: objectively valid judgements. Kant provides several
definitions of judgement, ranging from the enumeration of syntactic forms in the Table of
Judgements25 to a definition of what the cognitive role of judgement is in Section 19 of

24 We do not require surjectivity of hst .
25 This applies to the headings Quantity, Quality, and Relation; Modality refers rather to ways of

using judgements.
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CPR—where the latter pays scant attention to the possible syntactic form of judgements.
Nevertheless, it is this definition that provides the clearest clue as to Kant’s intended
semantics for judgements, so we will give the relevant passages from Section 19 and
then turn this into a formal definition. This will allow us to relate the cognitive role of
judgements to the syntactic forms in the Table of Judgements, and also to provide a formal
underpinning to Longuenesse’s ideas about the various roles the variable x plays in Kant’s
representation of categorical judgements (see the beginning of Section 6).

If, however, I investigate more closely the relation of given cognitions in
every judgement [. . . ] then I find that a judgement is nothing other than
the way to bring given cognitions to the objective unity of apperception.
That is the function of the copula is in them: to distinguish the objective
unity of given representations from the subjective. (B141–2)
Only in this way does there arise from this relation [between given cog-
nitions] a judgement, i.e. a relation that is objectively valid, and that
is sufficiently distinguished from the relation between these same rep-
resentations in which there would only be subjective validity, e.g. in
accordance with the law of association. In accordance with the latter I
could only say “If I carry a body, I feel a pressure of weight,” but not “It,
the body, is heavy,” which would be to say that these two representations
are combined in the object [. . . ] (B142)

We thus see again the connection between ‘unity of apperception’ and ‘relation to the ob-
ject’ that we also encountered in A109, quoted in Section 6.4.26 Following Longuenesse’s
(1998, p. 111) interpretation, we combine A109 with B141–2, and then (quotation repeated
for convenience)

[W]e cannot but come to the conclusion that reference to an object repre-
sented by the term ‘x’ in the logical form of judgement does have as one
of its components reference to an independent object leading us to seek
coherence among our representations of it and allowing us to think of
the connection of representations as in some sense necessary [. . . ] which
is precisely the role Kant assigned to reference to the “transcendental
object = x” in the A Deduction.

These considerations suggest that judgements must be interpreted both on objects of
experience and on the transcendental object and that there should exist a relation between
these interpretations. We illustrate this by means of the particular affirmative judgement
‘Some A are B’, which Kant glosses as ‘To some x to which A belongs, also B belongs’.
All we can ever do is find witnesses for x among objects of experience; but we hope that
this is sufficient to have a witness for x that refers to an object internally represented as
existing outside us. In terms of the formal structures introduced in Section 7 this means:
if we have an inverse system (T, {Ms | s ∈ T },F) whose limitM exists, and if for all
indices s,Ms |� ∃x(Ax ∧ Bx), thenM |� ∃x(Ax ∧ Bx). More generally,

26 Section 18 makes the point as well:

The transcendental unity of apperception is that unity through which all of
the manifold given in intuition is united in a concept of the object. It is called
objective on that account [. . . ]. (B139)
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DEFINITION 8.1. We may provisionally define a first-order sentence ϕ to be objectively
valid if for any inverse system (T, {Ms | s ∈ T },F) with inverse limit M, if for all s,
Ms |� ϕ thenM |� ϕ.

So far we have talked about sentences only. If we also want to interpret formulas, we
need to say something about assignments; this will give us one way of understanding how
a variable x can refer both to objects of experience and to the transcendental object.

DEFINITION 8.2. An assignment F on an inverse system (T, {Ms | s ∈ T },F) is a
function that assigns to each index s and each variable x an object in Ds (the domain of
Ms ) such that for s ≥ t , hst (F(s, x)) = F(t, x). We write Fs for the assignment onMs

that results if we hold the argument s fixed in F.

DEFINITION 8.3. Let F be an assignment on the inverse system (T, {Ms | s ∈ T },F).
We write (T, {Ms | s ∈ T },F) ‖−ϕ[F] if for all s ∈ T ,Ms |� ϕ[Fs]. We think of ‖− as
representing truth on the world of experience (T, {Ms | s ∈ T },F). If there is no danger
of confusion, satisfaction on an inverse system will be abbreviated by {Ms} ‖−ϕ[F].

LEMMA 8.4. If the inverse limit of (T, {Ms | s ∈ T },F) exists, F(x), considered as a
function of the index s is a thread in the inverse limit.

DEFINITION 8.5. If F is an assignment on the inverse system (T, {Ms | s ∈ T },F),
we write F̂ for the function that assigns to each variable x the thread F(x).

If we now look back at Kant’s characterization of transcendental logic as given in Section
4.2, we see that transcendental logic is concerned with ‘objective validity’, and hence
what truth of a judgement in the world of experience implies for truth about ‘independent’
objects. This can be captured formally in terms of a definition of validity as follows:

DEFINITION 8.6. Let � be a set of formulas and ϕ a formula. We write � ‖−ovϕ if for
any world of experience (T, {Ms | s ∈ T },F), any assignment F, and the associated
transcendental objectM, (T, {Ms | s ∈ T },F) ‖−�[F] impliesM |� ϕ[F̂]. If � ‖−ovϕ,
we say that � forces ϕ to be true of independent objects.

Objective validity of a formula ϕ in the sense of Definition 8.1 now corresponds to the
condition ϕ ‖−ovϕ. In Section 9.3 we shall see that this characterization captures a good
part of Kant’s intentions. Furthermore, if all formulas in � are objectively valid, � |� ϕ
entails � ‖−ovϕ. In general the entailment relations |� and ‖−ov are very different however,
and their interplay will shed light on Kant’s transcendental logic.

§9. A class of objectively valid judgements: geometric implications. We will prove
below that the class of objectively valid formulas coincides with a class of formulas that is
of independent interest, the geometric implications.

DEFINITION 9.1. Let L be a first-order language.27 A formula is geometric in L if it is
constructed from atomic formulas in L using ∧, ∨, ⊥ and ∃.

DEFINITION 9.2. A formula inL is a geometric implication if it is of the form ∀x̄(ϕ(x̄) →
ψ(x̄)), where ϕ,ψ are positive primitive.

27 We assume L contains =.
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We can view a geometric formula ψ(x̄) as a special case of a geometric implication by
writing it as ∀x̄(ϕ(x̄) → ψ(x̄)) where ϕ is a conjunction of identity statements for the
variables occurring in x̄ .

LEMMA 9.3. A geometric implication is equivalent to a conjunction of formulas ∀x̄
(θ(x̄) → ψ(x̄)), where θ is a conjunction of atomic formulas, and ψ geometric.

If we now compare the judgement forms just defined with Kant’s Table of Judgements
(restricted to Quantity, Quality, and Relation, since Modality is of a different character
altogether), we see that the hypothetical and disjunctive judgements are included, as well
as the affirmative categorical judgements; no distinction is made between affirmative and
infinite judgements (this is because we consider for the moment first-order formulas only;
see Footnote 33 for the required extension). Negative particular judgements are excluded,
however, and this for good Kantian reasons, as we shall see in Section 9.3. Of course
the class of judgements defined in Definition 9.1 goes somewhat beyond the letter of
the Table of Judgements because of the ∀∃ combination, although as we have argued,
not beyond its spirit: Kant’s hypothetical judgement form needs the full complexity of
geometric implications, and some of the synthetic a priori judgements have this structure
as well.

9.1. Constructive content. From a philosophical point of view it is interesting that the
logic of geometric implications28 is intuitionistic: let � ∪ {ϕ} be a finite set of geometric
implications such that � � ϕ (classically) then there exists an intuitionistic proof of ϕ from
�.29 This shows that logical relations between geometric implications are compatible with
a constructive understanding of the existential quantifier, as providing a witness given by
a construction that takes instantiations of the universal quantifiers as input. This brings us
close to the definition of judgement that Kant gives in the Prolegomena Section 23:

Judgements, when considered merely as the condition of the unification
of representations in a consciousness, are rules.

There is thus a logical relation between the definitions of judgement as given in CPR
(B141–2) and as given in the Prolegomena Section 23. Coquand has in fact devised a proof
system for geometric implications (called ‘dynamic proofs’) which brings out their rule-
like character particularly well.

Geometric implications have strong connections to Euclidean geometry as well. For
example, the axiom saying that given a center and a radius, one can construct a circle
with that center and radius, can be represented by a geometric implication. Avigad et al.
(2009) have recently shown in this journal that Euclid’s Elements can be axiomatized using
geometric implications only, by formalizing reasoning with diagrams. That is, proofs via
diagrams correspond at the syntactic level to proofs involving geometric implications. Kant
of course believed that geometric proofs proceed in intuition via construction, and do not
correspond to symbolic proofs. At the same time, Transcendental Deduction B Section
24 introduces the intriguing notion of synthesis speciosa, the ‘effect of the understanding
on sensibility’, which ensures the correspondence of the syntheses of the understanding
according to the possible logical forms (synthesis intellectualis) to the syntheses of our

28 The name derives from topos theory (see for example, Goldblatt, 2006, sec. 16.4).
29 See Palmgren (2002) for a proof theoretic argument.
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sensibility.30 Seen in this light, it is surely of interest that the same judgement forms play
a role in the domains of the understanding and of sensibility.

9.2. Geometric implications are objectively valid on inverse systems of finite models.

THEOREM 9.4. Suppose given an inverse system (T, {Ms | s ∈ T },F), where T
is countable and the domain of each Ms finite. In this case the inverse limit M exists
(Theorem 7.5). Let ϕ(x̄) be a geometric formula and F an assignment such that {Ms} ‖
−ϕ[F]. ThenM |� ϕ[F̂].

Proof. By induction on the complexity of ϕ. The statement of the theorem is true by
definition if ϕ is atomic. If the statement holds for ϕ1, . . . , ϕn it holds as well for ϕ1 ∧
. . . ∧ ϕn .
To proceed, we need a definition and two lemmata.

DEFINITION 9.5. Let T be the index set of the inverse system. A subset S ⊆ T is cofinal
if for every t ∈ T there exists s ∈ S with s ≥ t .

LEMMA 9.6. If S ⊆ T is cofinal, the inverse limit of (T, {Ms | s ∈ T },F) is isomorphic
to that of (S, {Ms | s ∈ S},F).

LEMMA 9.7. (Lyndon) Let h : A −→ B be a homomorphism from a model A to a
model B. Let ψ(x̄) be geometric, and ā a tuple of elements fromA, thenA |� ψ[ā] entails
B |� ψ[h(ā)].

Now let ϕ = ϕ1 ∨ ϕ2, where the ϕi are geometric, such that for all s,Ms |� ϕ[Fs]. We
show that at least one disjunct ϕ1, ϕ2 holds on a cofinal set of indices (or rather on the
models indexed by these indices). Suppose that for ϕ1 there exists t ∈ T such that for all
s ≥ t ,Ms �|� ϕ[Fs]. It follows that for all s ≥ t ,Ms |� ϕ2[Fs]. The set S = {s | s ≥ t}
is cofinal in T , so the inverse limit determined by T is isomorphic to that determined by S.
By the inductive hypothesis,M |� ϕ2[F̂], whenceM |� ϕ[F̂].

Lastly, suppose ϕ = ∃xθ(x), such that for all s, Ms |� ∃xθ(x)[Fs]. Since the index
set is countable and directed, we can construct a linear cofinal subset of T , as follows.
Enumerate T as t0, t1, t2, . . . and construct a linear cofinal subset S by putting s0 := t0;
s1 is an index larger than both s0 and t1; s2 is an element larger than both s1 and t2,
etcetera; put S : {s0, s1, s2, . . .}. Since we assumed the indexed models are finite, the
collection of domains {Ds | s ∈ S} can be given the structure of a finitely branching
tree, using the homomorphisms hst to define the branches. Pick s ∈ S, then by hypothesis,
for some assignment f onMs such that for all variables z different from x , f (z) = Fs(z):
Ms |� θ [ f ]. If r ∈ S is such that r ≤ s, then hsr ( f ) defines an assignment onMr and
Mr |� θ [hsr ( f )]. Since θ is geometric, it follows that the objects witnessing the existential
quantifier in ∃xθ(x) determine a subtree of the finitely branching tree {Ds | s ∈ S}.
BecauseMs |� ∃xθ(x)[Fs] for all s, this subtree is infinite. By König’s Lemma it must
therefore have an infinite branch. This branch is a thread ξ in the limit of the inverse system
(S, {Ms | s ∈ S},F) which can be extended to a thread in the inverse limit of (T, {Ms |
s ∈ T },F) by cofinality of S. Define an assignment G by G(s, z) := F(s, z), G(s, x); =
ξs . Then {Ms} ‖−θ [G], whence by the inductive hypothesis M |� θ [Ĝ], and hence
M |� ∃xθ [F̂].

30 Longuenesse (1998, chap. 8) provides an elaborate discussion of this topic.
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COROLLARY 9.8. Suppose given an inverse system (T, {Ms | s ∈ T },F), where T is
countable and the domain of eachMs finite. Let F be an assignment on the inverse system.
Let ∀x̄(ϕ(x̄) → ψ(x̄)) (where ϕ,ψ are geometric) be a geometric implication such that
{Ms} ‖−∀x̄(ϕ(x̄) → ψ(x̄))[F], thenM |� ∀x̄(ϕ(x̄) → ψ(x̄))[F̂].

Proof. To show that ∀x̄(ϕ(x̄) → ψ(x̄)) holds on the inverse limit M under F̂ , assume
thatM |� ϕ[G], where G is an assignment that differs at most on x̄ from F , so that for
all s ∈ T ,Ms |� ϕ[Gs] by Lemma 9.7. The hypothesis of the theorem gives that for all
s ∈ T ,Ms |� ψ[Gs], whenceM |� ψ[Ĝ] by Theorem 9.4.

9.3. A closer look at objective validity. With this theorem and especially its proof at
our disposal, we can give a more detailed justification of the definition of objective validity.
Consider a sentence ∃x A(x). If this sentence is true on someMs , that is, if the existential
quantifier is witnessed by an object of experience in Ms , then ∃x A(x) need not yet be
objectively valid, that is, witnessed by an object represented as being independent of our
cognition; for the relevant object of experience in Ms may disappear at stage t > s.
Moreover, even if ∃x A(x) is witnessed in severalMs , and even though we intend ∃x A(x)
to be true of the same object in these Ms , there is no guarantee this will be so. But if
∃x A(x) is witnessed by an object of experience in all Ms , one would like this to be so
because an object independent of our cognition unifies these witnesses and provides them
with objective reality; and the above proof shows that there is a transcendental element
(a thread in the inverse limit) which does this.31 But whether witnesses among objects of
experience can be so related to the transcendental object depends on the type of judgement
of which they are witnesses. For consider now ∃x¬A(x). It is easy to construct (see
Figure 1) an inverse system whose limit contains a single thread satisfying A, and where
∃x¬A(x) is true at each indexed model, but where the witnesses for ∃x¬A(x) are totally
unrelated.

In this context it is interesting what Kant has to say about the role of negation:

To be sure, logically, one can express negatively any proposition that one
wants, but in regard to the content of our cognition in general, that is,
whether it is expanded or limited by a judgement, negative judgements
have the special job solely of preventing error (A709/B737).

This seems to suggest that negative judgements need not have objective validity.32 In this
context, Wolff (1995, pp. 290–291) quotes C.S. Peirce, who wrote that in traditional logic,
existential import of a judgement depends on its Quality not Quantity: negative judgements
do not come with existential import. Peirce writes:

It is probable that Kant also understood the affirmative proposition to
assert the existence of its subject, while the negative did not do so; so
that ‘Some phoenixes do not rise from their ashes’ would be true, and
‘All phoenixes do rise from their ashes’ would be false.

31 As a consequence, if a geometric implication ∀x(ϕ(x) → ψ(x)) has existential import on
all models Ms , that is, if in each Ms there is an object of experience satisfying ϕ(x), then
∀x(ϕ(x) → ψ(x)) has existential import onM, and we can think of these objects of experience
as unified by the transcendental object.

32 Note though that it is a consequence of the formal definition of objective validity that negative
universal judgements are objectively valid.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020310000341
Downloaded from https://www.cambridge.org/core. Universiteit of Amsterdam, on 15 Oct 2018 at 14:31:21, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020310000341
https://www.cambridge.org/core


278 T. ACHOURIOTI AND M. VAN LAMBALGEN

Fig. 1

The same interpretation is given in Thompson (1953), where it is also argued that the infi-
nite judgement corresponding to the negative particular judgement—‘Some A is non-B’—
does carry existential import.33

9.3.1. Objective validity and truth It is important to distinguish objective validity from
truth. Objective validity of a judgement does not mean that the judgement is true of tran-
scendental objects, that is, of objects represented as existing independently of us. Rather,
it is a conditional notion: if the judgements holds on the world of experience (represented
by an inverse system of models), then it holds for transcendental objects as well. Of course
we can never be fully certain that the given judgement holds of the world of experience,
so truth on transcendental objects cannot be established definitively, and functions rather
as a regulative norm governing the activity of judgement. But if a judgement is objectively
valid, we know at least that it is not pointless to verify it on the world of experience, since
in doing so we may ‘relate our representations to an object’ (Longuenesse , 1998, p. 82).

9.3.2. Truly objective validity Despite the relation established in A109 between ‘unity
of self-consciousness’ and ‘objective validity’, Kant does not intend that objective validity
relates to each subject taken individually only:

Persuasion is a mere semblance, since the ground of the judgement,
which lies solely in the subject, is held to be objective. Hence such a
judgement also has only private validity, and this taking something to
be true cannot be communicated. Truth, however, rests upon agreement
with the object, with regard to which, consequently, the judgements of
every understanding must agree [. . . ] The touchstone of whether taking
something to be true is conviction or mere persuasion is therefore, exter-
nally, the possibility of communicating it and finding it to be valid for the
reason of every human being to take it to be true; for in that case there

33 The infinite judgement ‘some A are non-B’ can be formalized using the infinite disjunction
∨

as∨
C∩B=∅

(∃x(A(x) ∧ B(x)).

interestingly, this is still a geometric formula, and Theorem 9.4 can be extended to show that this
infinitary formula is objectively valid.
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is at least a presumption that the ground of the agreement of all judge-
ments, regardless of the difference among the subjects, rests on the com-
mon ground, namely the object, with which they therefore all agree and
through which the truth of the judgement is proved. (A820–1/B848–9)

This distinction, between ‘private validity’ and ‘validity for every human being’ plays a
prominent (and controversial) role in Section 18–20 of the Prolegomena; see Longuenesse
(1998, chap. 7) for discussion. Here we bring up this topic only to note that it calls for
an extension of the interpretation of the index set T , which now contains the mental
states in which syntheses are executed of all cognitive agents of interest, together with
the requirement that the the mental states of each agent are cofinal in the set of mental
states of every other agent (cf. Kant’s remark on the ‘possibility of communicating’).

§10. The transcendental object revisited: generalized inverse limits. So far we
have worked with a concrete representation of the transcendental object as an inverse limit
of a countable inverse system of finite models. However, if we look carefully at the justifi-
cation for this identification, we see that what is really important are the properties of the
maps that exist between inverse limit and indexed models, and between the indexed models
themselves, that is, the commutativity of the various diagrams of maps, since these express
the unifying function of the transcendental object. Also, the proof that geometric formulas
are objectively valid hinges on the compactness properties that hold in this concrete setting.
In order to get rid of this special feature we define a model-theoretic notion of inverse limit
which has preservation of geometric formulas built in.

DEFINITION 10.1. Let an inverse system (T, {Ms | s ∈ T },F) be given. The structure
M is a generalized inverse limit of (T, {Ms | s ∈ T },F) if it satisfies the properties

(1) there exists an injective homomorphism fromM into the inverse limit of (T, {Ms |
s ∈ T },F) (hence the inverse limit is nonempty).

(2) for each s there must exist a homomorphism πs : M −→ Ms satisfying the
coherence condition: for b ∈M, s ≥ t: hst (πs(b)) = πt (b)

(3) for geometric formulas ϕ, and parameters a from M, if for all s ∈ T , Ms |�
ϕ[πs(a)], thenM |� ϕ[a]

(4) M is maximal in the following sense: any model N that satisfies the previous
conditions (with projections π

′
n) and whose cardinality is less than that ofM can

be embedded intoM via a homomorphism g satisfying πn ◦ g = π
′
n).

A few comments on this definition will be helpful. The elements ofM can be thought
of as threads, via the mapping a ∈M �→ {πs(a) | s ∈ T }, where the r.h.s. is a thread be-
cause of coherence Condition (2). This map will in fact yield the injective homomorphism
required by (1); this follows from (3) applied to the geometric formula x = y. One way
to think of Condition (3) is to assume that the language ofM is expanded with a unique
individual constant for each object ofM; we denote the resulting expansion of ofM by
(M, −→a ). Let c be a name for the object a, then sinceM |� x = c[a] and x = c is positive
primitive, Ms |� x = c[πs(a)]. Thus the constants of the language of (M, −→a ) have a
unique interpretation inMs . In this setting Condition (3) can be formulated as

for positive primitive sentences ϕ in the language of (M, −→a ), if for all
s ∈ T ,Ms |� ϕ, thenM |� ϕ.
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LEMMA 10.2. Let (T, {Ms | s ∈ T },F) be an inverse system with generalized inverse
limit M, and let ϕ be a geometric implication (in the language of (M, −→a )) true on all
Ms . Then ϕ is true on (M, −→a )).

Proof. Immediate from Definition 10.1. �
We take a generalized inverse limitM to be a representation of the transcendental object

associated to the given inverse system. While the mapping posited in (1) need not be
surjective, in a sense the threads in the inverse limit are indistinguishable from the elements
ofM: if a thread ξ in the inverse limit witnesses a geometric formula ϕ(x), there will also
be an element fromM that does so, by (3).34

10.1. Objective validity redefined. Since we will now work with generalized inverse
limits, the definition of then entailment relation ‖−ov needs to be adapted.

DEFINITION 10.3. Let (T, {Ms | s ∈ T },F) be an inverse system with generalized
inverse limit M. Then �(x) ‖−ovϕ(x) means that for all a ∈ M, all s ∈ T , Ms |�
�[πs(a)] impliesM |� ϕ[a]. We call ϕ(x) objectively valid if ϕ(x) ‖−ovϕ(x).

We see that the variables on the l.h.s. of ‖−ov receive their interpretation from the
transcendental elements that are assigned to these variables on the r.h.s.; this seems to
be as close as one can get to Longuenesse’s view, cited on page 21, on the meaning of the
variable x in Kant’s logic lectures and in CPR.

§11. A characterization of objectively valid formulas.

THEOREM 11.1. Let ϕ be objectively valid. Then there are finitely many geometric
implications γ1, . . . , γn such that

(1) ϕ |� γi , for 1 ≤ i ≤ n

(2) γ1 ∧ . . . ∧ γn |� ϕ

Proof. Define 
 = {γ | γ is a geometric implication and ϕ |� γ }. By the compactness
theorem it suffices to prove that 
 |� ϕ, for this will give us the finitely many geometric
implications γ1, . . . , γn .35 The idea of the proof is that we pick a modelM of 
 and show
that it can be written as generalized inverse limit of a countable inverse system {Mn | n ∈
N} such that for all n,Mn |� ϕ. Since ϕ is assumed to be objectively valid, it follows that
M |� ϕ.

34 Note that Condition (4) implies that each set of ξ of cardinality less than |M|can be mapped
homomorphically toM; but there doesn’t have to be an isomorphism.

35 At this point there is a curious analogy with one of Kant’s ‘formal criteria of truth’, discussed in
Section 4.1:

If all the consequences of a cognition are true, then the cognition is true too. For
if there were something false in the cognition, then there would have to be a false
consequence too.
From the consequence, then, we may infer to a ground, but without being able to
determine this ground. Only from the complex of all consequences can one infer
to a determinate ground, infer that it is the true ground.


 stands for the ‘complex of all consequences’ of ϕ that are possible grounds; we try to prove that

 |� ϕ, that is, ‘if all the consequences of a cognition are true, then the cognition is true too’, and
in so doing infer the ‘determinate ground’, the γ1, . . . , γn .
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This proof sketch can be turned into a full proof most easily if we work with saturated
models. We shall set aside worries about the additional hypotheses needed to guarantee
existence of saturated models, and in particular will not present the proof in terms of special
models, so as not to obscure the main ideas. (For definitions of ‘saturated’ and ‘special’
see Chang & Keisler , 1990, chap. 5) or Hodges 1993, chap. 10).)

An essential ingredient in the proof is the following reformulation of Lemma 5.2.9 in
Chang & Keisler (1990):

THEOREM 11.2. Let B be a saturated model of cardinal κ , and let A be a model of
cardinality ≤ κ . Suppose every geometric sentence true on A is true on B. Let (A, −→a ) the
expansion of A with a 1–1 enumeration of its objects. Then there exists a homomorphism
from A to B with respect to geometric formulas in the language of the expansion (A, −→a ).

Choose a saturated model M of cardinality κ with M |� 
; we have to show M can
be written as the generalized inverse limit of an inverse system {Mn | n ∈ N} such
that ϕ is true on each Mn . We proceed by induction, and suppose Mn and a projection
πn :M −→Mn have been constructed. We assumeMn is saturated of cardinality λ > κ .
We constructMn+1 as a saturated model of a certain set of sentences n+1 that we now
proceed to specify.

(1) ϕ ∈ n+1

(2) There must be a homomorphism hn+1 : Mn+1 −→ Mn . By Theorem 11.2 this
means that every geometric formula true onMn+1 is true onMn . Since we do not
haveMn+1 yet, this translates into: every geometric sentence false onMn must be
false onMn+1. Define �n+1 = {¬ψ | ψgeometric ,Mn �|� ψ} and put �n+1 in
n+1.

(3) There must exist a homomorphism πn+1 : M −→ Mn+1. Again by Theorem
11.2 this means that every geometric sentence true onM is true onMn+1. Define
�n+1 = {τ | τ geometric ,M |� τ } and put �n+1 in n+1.

(4) To satisfy Condition (3) of Definition 10.1, consider the expansion (M, −→a ). Every
geometric sentence false on (M, −→a ) must be false on someMn . We therefore need
an enumeration θ1, θ2, . . . of geometric sentences θi and define �n+1 = {¬θn+1(c) |
(M, −→a ) �|� θn+1(c)}, and put �n+1 in n+1.

(5) This concludes the specification of n+1.

LEMMA 11.3. n+1 is consistent.

Proof. Suppose n+1 is inconsistent, then there finite sets ¬ψ1, . . . , ¬ψk ∈ �n+1, τ1, . . . ,
τl ∈ �n+1, and θn+1(c1), . . . , θn+1(ck) ∈ �n+1 such that

ϕ |� ¬(¬ψ1 ∧ . . . ∧ ¬ψk ∧ τ1 ∧ . . . ∧ τl ∧ ¬θn+1(c1) ∧ . . . ∧ θn+1(ck)),

which is equivalent to

ϕ |� (τ1 ∧ . . . ∧ τl → ψ1 ∨ . . . ∨ ψk ∨ θn+1(c1) ∨ . . . ∨ θn+1(ck)).

Since the constants in the occurrences of θn+1 do not occur in ϕ, we have

ϕ |� ∀x1 . . . xk(τ1 ∧ . . . ∧ τl → ψ1 ∨ . . . ∨ ψk ∨ θn+1(x1) ∨ . . . ∨ θn+1(xk)).

The formula on the r.h.s. of |� is a geometric implication, hence in 
. SinceM |� 
 and
all τ are true onM, we have

M |� ∀x1 . . . xk(ψ1 ∨ . . . ∨ ψk ∨ θn+1(x1) ∨ . . . ∨ θn+1(xk)).
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Now by the induction hypothesis a projection M −→ Mn has been constructed so that
the ψi are false onM, whence we get

M |� ∀x1 . . . xk(θn+1(x1) ∨ . . . ∨ θn+1(xk)),

which is a contradiction.

Due to the contribution of �n+1, the set n+1 can have cardinality κ . This was the
reason we assumedMn to be saturated of cardinality λ > κ . We now chooseMn+1 as a
saturated model of n+1 of cardinality λ, then all required homomorphisms exist.
We now have to verify that M satisfies the conditions of Definition 10.1 for being a
generalized inverse limit. The essential observation here is that for a constant c in the

language of the expansion (M, −→a ), (M, −→a ) |� x = c[a] implies (Mn+1,
−−−−→
πn+1(a)) |�

x = c[πn+1(a)], which in turn implies (Mn,
−−−−−−−−−→
hn+1(πn+1(a))) |� x = c[hn+1(πn+1(a))].

But we also have directly (Mn,
−−−→
πn(a)) |� x = c[πn(a))], whence hn+1(πn+1(a)) =

πn(a). This gives Conditions (1) and (2); and (3) holds by construction. To prove (4),
observe that the diagram of homomorphisms is such as to force that every geometric
sentence true on N is true on M.36 The commutativity of the diagram πn ◦ g = pi

′
n

is established as before. Now suppose there are b, b′ ∈ N such that g(b) = g(b′). Then
for all n,Mn |� x = y[πn(g(b)), πn(g(b′))], whenceMn |� x = y[π

′
n(b), π

′
n(b′)]. Since

x = y is geometric, this means that b = b′.
Both for the purpose of the proof theory given below and for good Kantian reasons, we

need a slight generalization of the preceding theorem:

THEOREM 11.4. If � is a set of sentences and ϕ a sentence such that � ‖−ovϕ, then
there are finitely many geometric implications γ1, . . . , γn such that � |� γ1 ∧ . . . ∧ γn and
γ1 ∧ . . . ∧ γn |� ϕ.

Proof. Analogous to the proof of Theorem 11.1, the only change is that 
 is defined as
{γ | γ is geometric implication ∀∃, � |� γ } and we again show that 
 |� ϕ.

The sentences in � specify a theory that every indexed model in the inverse system
under consideration must satisfy. This is related to Kant’s remarks in A573–4/B601–2,
which point to the fact that concepts are not independent, but carry analytic
structure:

[W]e nevertheless find that this idea [of the sum total of all possible
predicates in general], as an original concept, excludes a multiplicity of
of predicates, which, as derived through others, are already given, or
cannot coexist with one another [. . . ]

Theorem 11.4 then says that the only consequences of this analytic structure that have
objective validity are of the geometric implication form. Longuenesse (1998) discusses
this point on p. 87 and again on p. 107, both times with reference to Section 36 of the
Jäsche Logik. The point is that Kant also introduces the variable x in the representation of
analytic judgements:

An example of an analytic proposition is, To everything x to which the
concept of body (a +b) belongs, belongs also extension (b). An example

36 This is the only place where saturation ofM is used.
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of a synthetic proposition is, To everything x to which the concept of
body belongs, belongs also attraction (c).

Longuenesse (1998, p. 87) comments

Kant makes the presence of the x to which the two concepts are at-
tributed explicit for analytic as well as for synthetic judgements. This is
because in both cases concepts have meaning only if they are “universal
or reflected representations” of singular objects [. . . ] For all judgements,
even when they are analytic, what ultimately makes the combination of
concepts possible is relation to an “x of judgement”.

Since this ‘x of judgement’ is the same for both analytic and synthetic judgements, the
same notion of objective validity must apply.

§12. Transcendental logic as a ‘logic of truth’. Theorem 11.4 leads us back to the
original purpose of ‘the logic of truth’:

The part of transcendental logic that expounds the elements of the pure
cognition of the understanding and the principles without which no ob-
ject can be thought at all, is the transcendental analytic, and at the same
time a logic of truth. For no cognition can contradict it without at the
same time losing all content, i.e. all relation to any object, hence all truth.
(A62–3/B87)

In this section we present a sound and complete proof system for the ‘logic of truth’,
which more or less does what Kant wants it to do. We will see that the main step in the
completeness proof is Theorem 11.4.

We claim here that the ‘logic of truth’ is determined by the notion of validity ‖−ov .37 The
logical form underlying ‖−ov involves the Kantian notion of object as formalized through
inverse systems and their (generalized) inverse limits. In terms of this notion of validity,
that ϕ is objectively valid can be stated as ‘ϕ ‖−ovϕ’, or if we restrict ourselves to inverse
systems that satisfy a given theory �, as ‘�, ϕ ‖−ovϕ’. That a ‘cognition’ ϕ contradicts the
‘logic of truth’ can then be formalized as either ϕ �‖−ovϕ or �, ϕ �‖−ovϕ. In the first case
this means concretely that there is an inverse system {Ms} with generalized inverse limit
M such that all s ∈ T ,Ms |� ϕ butM �|� ϕ. We would like this to be the case if and only
if the sequent ϕ ⇒ ϕ is not derivable in a certain sequent calculus.

12.1. A sequent calculus for the ‘logic of truth’. Let ⇒ov be the syntactic counterpart
of ‖−ov , to be used in the geometric implication of the sequent calculus. The peculiarity of
this calculus is that, whereas usually ϕ ⇒ ϕ (or more generally �, ϕ ⇒ ϕ) is taken as an
axiom(-schema), here it is one purpose of the calculus to determine for which ϕ, the sequent
ϕ ⇒ov ϕ is derivable. One special case of the schema can be taken as axiomatic, since for
atomic formulas A we do have A ⇒ov A. In the usual systems one would derive ϕ ⇒ov

ϕ (for arbitrary ϕ) from this by induction, but with respect to ⇒ov the rules should be
such that the induction is blocked beyond the geometric implication stage. We achieve this
introducing an auxiliary sequent arrow ⇒pov which has the same semantic interpretation

37 In the sense of Definition 10.3.
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as ⇒ov , but for which the rules are such that ϕ ⇒pov θ is derivable only if ϕ, θ are
geometric.

The proposed proof system thus has three sequent arrows: ⇒, whose interpretation is
as in classical logic, and both ⇒ov and ⇒pov whose interpretation is given by ‖−ov .
The purpose of the calculus is to derive sequents of the form � ⇒ov ϕ; ⇒ and ⇒pov

are auxiliary notions. We will have the following types of rules: rules for classical logic,
formulated using ⇒, rules for the objectively valid formulas involving only ⇒pov , rules
for the objectively valid formulas holding for both ⇒pov and ⇒ov (to avoid duplication
we will write these rules with an arrow ⇒(p)ov which means ‘either ⇒pov or ⇒ov ’), and
rules that mix the various arrows. The system will be called LT in a reference to Kant’s
term ‘logic of truth’, and comprises the following rules:

(1) The standard sequent rules for ⇒.

(2) Rules valid for ⇒pov only

A ⇒pov A Axiom (A an atomic formula)

ϕ ⇒pov ϕ ψ ⇒pov ψ ϕ ⇒pov θ ψ ⇒pov θ
Left ∨

ϕ ∨ ψ ⇒pov θ

ϕ ⇒pov θ
Right ∃

ϕ ⇒pov ∃xθ

ϕ ⇒pov θ
Left ∃ (x not free in θ )∃xϕ ⇒pov θ

(3) Rules valid for both ⇒pov and ⇒ov

ϕ ⇒(p)ov θ
Left ∧

ϕ ∧ ψ ⇒(p)ov θ

ϕ ⇒(p)ov θ ϕ ⇒(p)ov τ
Right ∧

ϕ ⇒(p)ov θ ∧ τ

ϕ ⇒(p)ov θ
Right ∨

ϕ ⇒(p)ov θ ∨ τ

(4) Rules valid for ⇒ov

ϕ ⇒ov θ
Left ∀∀xϕ ⇒ov θ

ϕ ⇒ov θ
Right ∀ (x not free in ϕ)

ϕ ⇒pov ∀xθ

(5) Rules involving ⇒pov , ⇒ov and/or ⇒
ϕ ⇒pov ϕ
ϕ ⇒ov ϕ

ϕ ⇒pov ϕ � ⇒ov ϕ �,ψ ⇒ov θ
Left →

�, ϕ → ψ ⇒ov θ
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ϕ ⇒pov ϕ �, ϕ ⇒ov ψ
Right →

� ⇒ov ϕ → ψ

� ⇒ ϕ ϕ ⇒ov ψ ψ ⇒ θ
ov–Cut

� ⇒ov θ

The ov-Cut rule plays a special role in LT : one could say it connects ‘general logic’ (rep-
resented by the classical sequent arrow ⇒) with transcendental logic proper (represented
by ⇒ov ). It says that cut-formulas must be of a specific form (geometric implications ). It
cannot be eliminated, because it expresses that inferences from inverse system to inverse
limit have to proceed via objectively valid formulas, and cannot proceed more directly.
Our next aim is to prove soundness and completeness of LT with respect to ‖−ov .

LEMMA 12.1.
ϕ1 ⇒ov ϕ1 . . . ϕn ⇒ov ϕn
ϕ1 ∧ . . . ∧ ϕn ⇒ov ϕ1 ∧ . . . ∧ ϕn

Proof. By repeated application of the left and right ∧ rules. �

LEMMA 12.2.
ϕ ⇒pov ϕ ψ ⇒ov ψ

ϕ → ψ ⇒ov ϕ → ψ

Proof.

ϕ ⇒pov ϕ ψ ⇒ov ψ
Left →

ϕ → ψ, ϕ ⇒ov ψ ϕ ⇒pov ϕ
Right →

ϕ → ψ ⇒ov ϕ → ψ

As a consequence we have

LEMMA 12.3.
ϕ ⇒pov ϕ ψ ⇒ov ψ

∀x(ϕ → ψ) ⇒ov ∀x(ϕ → ψ)

LEMMA 12.4. LT is sound for the intended interpretation: � ⇒ov ψ implies � ‖−ovψ .

THEOREM 12.5. ϕ ⇒ov ϕ is derivable iff ϕ is provably equivalent (in classical logic)
to a conjunction of geometric implications.

Proof. For the right to left direction, it follows from Lemmas 12.3 and 12.1 that for
every conjunction ψ of geometric implications, ψ ⇒ov ψ is derivable. The ov-Cut rule
extends this to the case of ϕ provably equivalent to such ψ . For let γ1, . . . , γn be such that
for, ϕ |� γ1 ∧ . . . ∧ γn , and γ1 ∧ . . . ∧ γn |� ϕ, then ov-Cut applied to the cut formula
γ1 ∧ . . . ∧ γn yields ϕ ⇒ov ϕ.38 The left to right follows from Theorem 11.1 by soundness
(Lemma 12.4). �

THEOREM 12.6. LT is complete: � ‖−ovψ implies � ⇒ov ψ .

Proof. If � ‖−ovψ , then by Theorem 11.4 there is a conjunction γ1 ∧ . . . ∧ γn of
geometric implications γi such that � |� γ1 ∧ . . . ∧ γn and γ1 ∧ . . . ∧ γn |� ψ . By
completeness for classical first-order logic it follows that � ⇒ γ1 ∧ . . .∧γn and γ1 ∧ . . .∧
γn ⇒ ψ are derivable. By Theorem 12.5 γ1 ∧ . . . ∧ γn ⇒ov γ1 ∧ . . . ∧ γn is derivable. The
proof is completed by an application of ov-Cut:

38 This explains the peculiar ‘symmetric’ form of the cut rule.
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� ⇒ γ1 ∧ . . . ∧ γn γ1 ∧ . . . ∧ γn ⇒ov γ1 ∧ . . . ∧ γn γ1 ∧ . . . ∧ γn ⇒ ψ

� ⇒ov ψ

�
It follows that ϕ ⇒ov ϕ is not derivable in LT (‘contradicts the logic of truth’) if and

only if there is an inverse system {Ms} with generalized inverse limit M such that all
s ∈ T , Ms |� ϕ but M �|� ϕ (‘loses any relation to the object’, in the sense that what
a sentence says about objects of experience need not be related to what it says about the
transcendental object).

Our claim is not that the completeness theorem shows that Kant’s transcendental logic
has now been formalized in its full extent. For example, we did not at all consider his
treatment of causality. If we were to do so, the structure of the inverse systems would have
to be considerably enriched: the indexed models would have to contain events, and would
have to support predicates describing instantaneous and continuous causation,39 perhaps
governed by axioms such as the event calculus (van Lambalgen & Hamm , 2004). Our main
purpose here has been to introduce a formal semantics for judgements based on Kant’s
notion of object, and in doing so to establish a framework in which further specifications
of transcendental logic can be situated.

§13. Back to the Table of Judgements. With these formal results established, we
may now consider their implications for Kant’s Table of Judgements and its role in the ar-
gumentative structure of CPR. It was Kant’s intention to enumerate primitive logical forms
which each express a particular function of cognition as it attempts to construct objects
out of sensory manifolds. Strawson (1966) claimed this was a misconceived enterprise,
since (a) there are no primitive logical forms due to interdefinability (e.g., the hypothetical
judgement is definable using negation and the disjunctive judgement), and (b) based on an
(arbitrary) choice of primitives, indefinitely many logical forms can be derived, and one
would not want to say that each of these corresponds to a particular function of cognition.

The answer to this is that Kant selected ‘primitive’ logical forms of judgement already
with a particular transcendental purpose in mind, a purpose that renders the classical
semantics underlying Strawson’s objection inapplicable. We have seen on p. 258 that
according to Longuenesse (1998, p. 78) Kant selected forms of judgement for inclusion
in the Table, not because these were sanctioned by traditional logic, but because they play
a role in “bring[ing] given cognitions to the objective unity of apperception,” that is, to
relate our representations to objects.40 Thus, there is first a (largely suppressed) general
argument selecting particular judgement forms, followed by detailed arguments (mostly
in the Transcendental Deduction of the B edition) aligning particular logical forms with
particular cognitive functions directed toward the constitution of objects.

The results of this paper pertain to the first step in the argumentation. We have seen that
in B141–2, Kant provides a functional characterisation of judgement in terms of objective
validity:

If, however, I investigate more closely the relation of given cognitions in
every judgement [. . . ] then I find that a judgement is nothing other than

39 Watkins (2004) argues that it is especially continuous causation as it occurs in Newtonian
mechanics through the concept of force, that led to Kant’s particular theory of causality.

40 There is one awkward aspect of this interpretation though, as we have seen negative particular
judgements are not objectively valid.
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the way to bring given cognitions to the objective unity of apperception.
That is the function of the copula is in them: to distinguish the objective
unity of given representations from the subjective. Only in this way does
there arise from this relation [between given cognitions] a judgement,
i.e. a relation that is objectively valid [...] (B141–2).

Theorem 11.1 can be viewed as the derivation of a structural characterization—deriving
specific syntactic forms—from Kant’s functional characterisation of judgement.

This characterization is very closely related to the Table of Judgements. On the one
hand, it is easily seen that affirmative categorical judgements are included in our class,
as are disjunctive judgements.41 The extended discussion of hypotheticals in Section 4.1
shows that their intrinsic logical complexity can be as high as geometric implication, hence
they fit in our class. On the other hand, our class does not include negative particular judge-
ments, but then these types of judgements were probably not intended to be candidates for
objective validity, given Kant’s views on negation. Furthermore, our characterization limits
the complexity of objectively valid judgements to geometric implication, that is, the logical
complexity of hypotheticals. Thus we have in a sense proved the completeness of the Table
of Judgements.

This is perhaps the place to address what may be a lingering worry in the reader’s mind.
Friedman (1992) has extensively argued that it is precisely Kant’s logic’s lack of ability
to express the ∀∃ quantifier combination that drove his philosophy of mathematics. For
example, because his logic does not allow him to express that a certain domain is infinite
(this needs the ∀∃ quantifier combination), Kant was forced to adopt a ‘constructive’
approach to mathematics that acknowledges potential infinity only. By contrast, we have
identified the geometric implication judgement forms as those judgements that should be
of interest to Kant, since only they can claim objective validity. Shouldn’t we say with
Friedman that although Kant should have considered geometric implication judgement
forms, he was in effect barred from doing so because the inferences contained in his general
logic are too weak? The answer must be the following. It is clear that Kant did not conceive
of ‘all’ in the universal categorical judgement and ‘some’ in the particular categorical
judgements as universal and existential quantifiers that can be freely combined among
themselves and with other logical operators, for example, to generate a ∀∃ judgement. It
is also clear that Kants general logic is not complete for geometric logic. This however is
not an argument against the claim that Kant’s judgement forms are geometric. Even the
fact that Kant takes categorical judgements in subject–predicate form is not a counterar-
gument, since predicates may well contain existential quantifiers (as Kant’s examples of
synthetic a priori principles show), and once this is allowed, geometric implications look
like bona fide subject–predicate judgements. Lastly, Kant has ways to deal with the ∀∃

41 With the proviso that one may question whether the meaning given to the disjunctive judgement
here exhausts Kant’s meaning: his talk of parts and wholes, A73–4/B99, and more elaborately in
the Jäsche Logik, Section 27, Section 28) suggests his disjunction has some substructural aspects.
For example, the usual introduction rule for ∨ fails for his intended meaning. The simultaneous
presence of the disjuncts can perhaps be captured by the par connective of linear logic (see
the rules for ‘par logic’ in Hyland & de Paiva, 1993, p. 282), or the structural connective “,”
in Boricic’ (1985) multiple-conclusion natural deduction system . Note that in these cases the
elimination rule for disjunction is not the one familiar from classical (or intuitionistic) logic,
but the disjunctive syllogism, as in Kant. We conjecture that the connection between disjunctive
judgements and the Category of Community that Kant discusses in the Third Analogy can be
made much more transparent by giving disjunction one of the substructural readings.
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quantifier combination in geometric implications; as the argument of the Second Analogy
of Experience amply shows, he interprets the quantifier combination as a rule. Thus for
Kant, the inferences necessary for dealing with geometric implications are to be found in
transcendental logic. His way of proceeding here is consistent, because geometric logic is
intrinsically intuitionistic, so that we may think of the ∀∃ quantifier combination as given
by a rule.
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