19 research outputs found

    Trophic consequences of non-native pumpkinseed Lepomis gibbosus for native pond fishes

    Get PDF
    Introduced non-native fishes can cause considerable adverse impacts on freshwater ecosystems. The pumpkinseed Lepomis gibbosus, a North American centrarchid, is one of the most widely distributed non-native fishes in Europe, having established self-sustaining populations in at least 28 countries, including the U.K. where it is predicted to become invasive under warmer climate conditions. To predict the consequences of increased invasiveness, a field experiment was completed over a summer period using a Control comprising of an assemblage of native fishes of known starting abundance and a Treatment using the same assemblage but with elevated L. gibbosus densities. The trophic consequences of L. gibbosus invasion were assessed with stable isotope analysis and associated metrics including the isotopic niche, measured as standard ellipse area. The isotopic niches of native gudgeon Gobio gobio and roach Rutilus rutilus overlapped substantially with that of non-native L. gibbosus, and were also substantially reduced in size compared to ponds where L. gibbosus were absent. This suggests these native fishes shifted to a more specialized diet in L. gibbosus presence. Both of these native fishes also demonstrated a concomitant and significant reduction in their trophic position in L. gibbosus presence, with a significant decrease also evident in the somatic growth rate and body condition of G. gobio. Thus, there were marked changes detected in the isotopic ecology and growth rates of the native fish in the presence of non-native L. gibbosus. The implications of these results for present and future invaded pond communities are discussed

    Effects of rewetting measures in Dutch raised bog remnants on assemblages of aquatic Rotifera and microcrustaceans

    No full text
    Species differ in their life cycle, habitat demands and dispersal capacity. Consequently different species or species groups may respond differently to restoration measures. To evaluate effects of restoration measures in raised bog remnants on aquatic microinvertebrates, species assemblages of Rotifera and microcrustaceans were sampled in 10 rewetted and 10 non-rewetted sites, situated in 7 Dutch raised bog remnants. A total of 129 species (Rotifera 108, Cladocera 15, Copepoda 6 species) were found. The species assemblages, total numbers of species and numbers of characteristic raised bog species did not differ between the 10 rewetted and 10 non-rewetted sites. The dominant pattern in the variation in microinvertebrate assemblages could be explained by the presence or absence of open water and variation in physico-chemical variables of surface water and organic matter. Furthermore, the species assemblages of water bodies situated in the same area were on average more similar to each other than to assemblages from other areas. These differences between areas may be due to differences in environmental conditions of water bodies, and possibly also to differences in the local species pool and the subsequent immigration sequence of species. We conclude that, in contrast to earlier findings on aquatic macroinvertebrates, populations of microinvertebrate species, including characteristic species, can either persist in the raised bog remnants during the process of rewetting or (re-)establish within a relatively short period of time (less than about 5 years)

    Learning about the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling techniques

    Get PDF
    A negotiation between agents is typically an incomplete information game, where the agents initially do not know their opponent’s preferences or strategy. This poses a challenge, as efficient and effective negotiation requires the bidding agent to take the other’s wishes and future behavior into account when deciding on a proposal. Therefore, in order to reach better and earlier agreements, an agent can apply learning techniques to construct a model of the opponent. There is a mature body of research in negotiation that focuses on modeling the opponent, but there exists no recent survey of commonly used opponent modeling techniques. This work aims to advance and integrate knowledge of the field by providing a comprehensive survey of currently existing opponent models in a bilateral negotiation setting. We discuss all possible ways opponent modeling has been used to benefit agents so far, and we introduce a taxonomy of currently existing opponent models based on their underlying learning techniques. We also present techniques to measure the success of opponent models and provide guidelines for deciding on the appropriate performance measures for every opponent model type in our taxonomy
    corecore