936 research outputs found

    Dust, Ice, and Gas In Time (DIGIT) Herschel program first results: A full PACS-SED scan of the gas line emission in protostar DK Chamaeleontis

    Get PDF
    Aims. We aim to study the composition and energetics of the circumstellar material of DK Cha, an intermediate-mass star in transition from an embedded configuration to a star plus disk stage, during this pivotal stage of its evolution. Methods. Using the range scan mode of PACS on the Herschel Space Observatory, we obtained a spectrum of DK Cha from 55 to 210 ÎŒm as part of the DIGIT key program. Results. Almost 50 molecular and atomic lines were detected, many more than the 7 lines detected in ISO-LWS. Nearly the entire ladder of CO from J = 14–13 to 38–37 (E_u/k = 4080 K), water from levels as excited as J_(K−1 K+1) = 7_(07) (E_u/k = 843 K), and OH lines up to E_u/k = 290 K were detected. Conclusions. The continuum emission in our PACS SED scan matches the flux expected by a model consisting of a star, a surrounding disk of 0.03 M_⊙, and an envelope of a similar mass, supporting the suggestion that the object is emerging from its main accretion stage. Molecular, atomic, and ionic emission lines in the far-infrared reveal the outflow’s influence on the envelope. The inferred hot gas may be photon-heated, but some emission may be caused by C-shocks in the walls of the outflow cavity

    Dense and warm molecular gas in the envelopes and outflows of southern low-mass protostars

    Full text link
    Observations of dense molecular gas lie at the basis of our understanding of the density and temperature structure of protostellar envelopes and molecular outflows. We aim to characterize the properties of the protostellar envelope, molecular outflow and surrounding cloud, through observations of high excitation molecular lines within a sample of 16 southern sources presumed to be embedded YSOs. Observations of submillimeter lines of CO, HCO+ and their isotopologues, both single spectra and small maps were taken with the FLASH and APEX-2a instruments mounted on APEX to trace the gas around the sources. The HARP-B instrument on the JCMT was used to map IRAS 15398-3359 in these lines. HCO+ mapping probes the presence of dense centrally condensed gas, a characteristic of protostellar envelopes. The rare isotopologues C18O and H13CO+ are also included to determine the optical depth, column density, and source velocity. The combination of multiple CO transitions, such as 3-2, 4-3 and 7-6, allows to constrain outflow properties, in particular the temperature. Archival submillimeter continuum data are used to determine envelope masses. Eleven of the sixteen sources have associated warm and/or dense quiescent as characteristic of protostellar envelopes, or an associated outflow. Using the strength and degree of concentration of the HCO+ 4-3 and CO 4-3 lines as a diagnostic, five sources classified as Class I based on their spectral energy distributions are found not to be embedded YSOs. The C18O 3-2 lines show that for none of the sources, foreground cloud layers are present. Strong molecular outflows are found around six sources, .. (continued in paper)Comment: Accepted by A&A, 13 figure

    The origin of organic emission in NGC 2071

    Get PDF
    Context: The physical origin behind organic emission in embedded low-mass star formation has been fiercely debated in the last two decades. A multitude of scenarios have been proposed, from a hot corino to PDRs on cavity walls to shock excitation. Aims: The aim of this paper is to determine the location and the corresponding physical conditions of the gas responsible for organics emission lines. The outflows around the small protocluster NGC 2071 are an ideal testbed to differentiate between various scenarios. Methods: Using Herschel-HIFI and the SMA, observations of CH3OH, H2CO and CH3CN emission lines over a wide range of excitation energies were obtained. Comparisons to a grid of radiative transfer models provide constraints on the physical conditions. Comparison to H2O line shape is able to trace gas-phase synthesis versus a sputtered origin. Results: Emission of organics originates in three spots: the continuum sources IRS 1 ('B') and IRS 3 ('A') as well as a outflow position ('F'). Densities are above 107^7 cm−3^{-3} and temperatures between 100 to 200 K. CH3OH emission observed with HIFI originates in all three regions and cannot be associated with a single region. Very little organic emission originates outside of these regions. Conclusions: Although the three regions are small (<1,500 AU), gas-phase organics likely originate from sputtering of ices due to outflow activity. The derived high densities (>107^7 cm−3^{-3}) are likely a requirement for organic molecules to survive from being destroyed by shock products. The lack of spatially extended emission confirms that organic molecules cannot (re)form through gas-phase synthesis, as opposed to H2O, which shows strong line wing emission. The lack of CH3CN emission at 'F' is evidence for a different history of ice processing due to the absence of a protostar at that location and recent ice mantle evaporation.Comment: 10 Pages, 8 figures, Accepted for Astronomy and Astrophysic

    Far infrared CO and H2_2O emission in intermediate-mass protostars

    Get PDF
    Intermediate-mass young stellar objects (YSOs) provide a link to understand how feedback from shocks and UV radiation scales from low to high-mass star forming regions. Aims: Our aim is to analyze excitation of CO and H2_2O in deeply-embedded intermediate-mass YSOs and compare with low-mass and high-mass YSOs. Methods: Herschel/PACS spectral maps are analyzed for 6 YSOs with bolometric luminosities of Lbol∌102−103L_\mathrm{bol}\sim10^2 - 10^3 L⊙L_\odot. The maps cover spatial scales of ∌104\sim 10^4 AU in several CO and H2_2O lines located in the ∌55−210\sim55-210 ÎŒ\mum range. Results: Rotational diagrams of CO show two temperature components at Trot∌320T_\mathrm{rot}\sim320 K and Trot∌700−800T_\mathrm{rot}\sim700-800 K, comparable to low- and high-mass protostars probed at similar spatial scales. The diagrams for H2_2O show a single component at Trot∌130T_\mathrm{rot}\sim130 K, as seen in low-mass protostars, and about 100100 K lower than in high-mass protostars. Since the uncertainties in TrotT_\mathrm{rot} are of the same order as the difference between the intermediate and high-mass protostars, we cannot conclude whether the change in rotational temperature occurs at a specific luminosity, or whether the change is more gradual from low- to high-mass YSOs. Conclusions: Molecular excitation in intermediate-mass protostars is comparable to the central 10310^{3} AU of low-mass protostars and consistent within the uncertainties with the high-mass protostars probed at 3⋅1033\cdot10^{3} AU scales, suggesting similar shock conditions in all those sources.Comment: Accepted to Astronomy & Astrophysics. 4 pages, 5 figures, 3 table

    Spin configuration in a frustrated ferromagnetic/antiferromagnetic thin film system

    Full text link
    We have studied the magnetic configuration in ultrathin antiferromagnetic Mn films grown around monoatomic steps on an Fe(001) surface by spin-polarized scanning tunneling microscopy/spectroscopy and ab-initio-parametrized self-consistent real-space tight binding calculations in which the spin quantization axis is independent for each site thus allowing noncollinear magnetism. Mn grown on Fe(001) presents a layered antiferromagnetic structure. In the regions where the Mn films overgrows Fe steps the magnetization of the surface layer is reversed across the steps. Around these defects a frustration of the antiferromagnetic order occurs. Due to the weakened magnetic coupling at the central Mn layers, the amount of frustration is smaller than in Cr and the width of the wall induced by the step does not change with the thickness, at least for coverages up to seven monolayers.Comment: 10 pages, 5 figure

    The hot core towards the intermediate mass protostar NGC7129 FIRS 2: Chemical similarities with Orion KL

    Get PDF
    NGC 7129 FIRS 2 (hereafter FIRS 2) is an intermediate-mass (2 to 8 Msun) protostar located at a distance of 1250 pc. High spatial resolution observations are required to resolve the hot core at its center. We present a molecular survey from 218200 MHz to 221800 MHz carried out with the IRAM Plateau de Bure Interferometer. These observations were complemented with a long integration single-dish spectrum taken with the IRAM 30m telescope. We used a Local Thermodynamic Equilibrium (LTE) single temperature code to model the whole dataset. The interferometric spectrum is crowded with a total of ~300 lines from which a few dozens remain unidentified yet. The spectrum has been modeled with a total of 20 species and their isomers, isotopologues and deuterated compounds. Complex molecules like methyl formate (CH3OCHO), ethanol (CH3CH2OH), glycolaldehyde (CH2OHCHO), acetone (CH3COCH3), dimethyl ether (CH3OCH3), ethyl cyanide (CH3CH2CN) and the aGg' conformer of ethylene glycol (aGg'-(CH2OH)_2) are among the detected species. The detection of vibrationally excited lines of CH3CN, CH3OCHO, CH3OH, OCS, HC3N and CH3CHO proves the existence of gas and dust at high temperatures. In fact, the gas kinetic temperature estimated from the vibrational lines of CH3CN, ~405 K, is similar to that measured in massive hot cores. Our data allow an extensive comparison of the chemistry in FIRS~2 and the Orion hot core. We find a quite similar chemistry in FIRS 2 and Orion. Most of the studied fractional molecular abundances agree within a factor of 5. Larger differences are only found for the deuterated compounds D2CO and CH2DOH and a few molecules (CH3CH2CN, SO2, HNCO and CH3CHO). Since the physical conditions are similar in both hot cores, only different initial conditions (warmer pre-collapse phase in the case of Orion) and/or different crossing time of the gas in the hot core can explain this behavior.Comment: 30 pages, 9 figure

    APEX-CHAMP+ high-J CO observations of low-mass young stellar objects: II. Distribution and origin of warm molecular gas

    Get PDF
    The origin and heating mechanisms of warm (50<T<200 K) molecular gas in low-mass young stellar objects (YSOs) are strongly debated. Both passive heating of the inner collapsing envelope by the protostellar luminosity as well as active heating by shocks and by UV associated with the outflows or accretion have been proposed. We aim to characterize the warm gas within protosteller objects, and disentangle contributions from the (inner) envelope, bipolar outflows and the quiescent cloud. High-J CO maps (12CO J=6--5 and 7--6) of the immediate surroundings (up to 10,000 AU) of eight low-mass YSOs are obtained with the CHAMP+ 650/850 GHz array receiver mounted on the APEX telescope. In addition, isotopologue observations of the 13CO J=6--5 transition and [C I] 3P_2-3P_1 line were taken. Strong quiescent narrow-line 12CO 6--5 and 7--6 emission is seen toward all protostars. In the case of HH~46 and Ced 110 IRS 4, the on-source emission originates in material heated by UV photons scattered in the outflow cavity and not just by passive heating in the inner envelope. Warm quiescent gas is also present along the outflows, heated by UV photons from shocks. Shock-heated warm gas is only detected for Class 0 flows and the more massive Class I sources such as HH~46. Outflow temperatures, estimated from the CO 6--5 and 3--2 line wings, are ~100 K, close to model predictions, with the exception of the L~1551 IRS 5 and IRAS 12496-7650, for which temperatures <50 K are found. APEX-CHAMP+ is uniquely suited to directly probe a protostar's feedback on its accreting envelope gas in terms of heating, photodissociation, and outflow dispersal by mapping 1'x1' regions in high-J CO and [C I] lines.Comment: 18 pages, accepted by A&A, A version with the figures in higher quality can be found on my website: http://www.cfa.harvard.edu/~tvankemp
    • 

    corecore