9 research outputs found

    Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity

    Get PDF

    Intracellular signalling involved in modulating human endothelial barrier function*

    No full text
    The endothelium dynamically regulates the extravasation of hormones, macromolecules and other solutes. In pathological conditions, endothelial hyperpermeability can be induced by vasoactive agents, which induce tiny leakage sites between the cells, and by cytokines, in particular vascular endothelial growth factor, which increase the exchange of plasma proteins by vesicles and intracellular pores. It is generally believed that the interaction of actin and non-muscle myosin in the periphery of the endothelial cell, and the destabilization of endothelial junctions, are required for endothelial hyperpermeability induced by vasoactive agents. Transient short-term hyperpermeability induced by histamine involves Ca(2+)/calmodulin-dependent activation of the myosin light chain (MLC) kinase. Prolonged elevated permeability induced by thrombin in addition involves activation of the small GTPase RhoA and Rho kinase, which inhibits dephosphorylation of MLC. It also involves the action of other protein kinases. Several mechanisms can increase endothelial barrier function, depending on the tissue affected and the cause of hyperpermeability. They include blockage of specific receptors, and elevation of cyclic AMP by agents such as β(2)-adrenergic agents. Depending on the vascular bed, nitric oxide and cyclic GMP can counteract or aggravate endothelial hyperpermeability. Finally, inhibitors of RhoA activation and Rho kinase represent a potentially valuable group of agents with endothelial hyperpermeability-reducing properties

    Tumor necrosis factor induces the production of urokinase-type plasminogen activator by human endothelial cells

    No full text
    Endothelial cells play an important role in the regulation of fibrinolysis by the production of several key regulatory proteins. The cytokines tumor necrosis factor (TNF), lymphotoxin, and interleukin-1 (IL-1), but not interleukin-6, increase the production of plasminogen activator inhibitor-1 (PAI-1) by endothelial cells, whereas they have no stimulatory effect on the production of tissue-type plasminogen activator (t-PA). Primary cultures of human endothelial cells release very little urokinase-type plasminogen activator (u-PA). We report here that TNF and lymphotoxin induce, in a concentration-dependent way, the production of both cellular and secreted u-PA antigen in primary and subcultured human endothelial cells. The TNF-induced increase was accompanied by a more than 10-fold increase in u-PA mRNA. Upon stimulation of early passage umbilical vein endothelial cells by TNF, u-PA was predominantly secreted at the basolateral side, whereas PAI activity and t-PA were found in more equal amounts at the apical and basolateral sides of the cell monolayers. TNF-stimulated u-PA secretion by subcultured human aorta endothelial cells showed only a marginal polarity. The u-PA antigen was present in a plasmin-activatable form (single chain u-PA) and in a nonactivatable form (probably u-PA: PAI-1 complex). During the induction of u-PA by TNF, the ratio between plasmin-activatable u-PA and total u-PA decreased markedly. This may indicate that TNF also increases the degree of u-PA activation. The parallel induction of the synthesis and secretion of both u-PA and PAI-1 by endothelial cells adds a new aspect to the alterations of the fibrinolytic system caused by inflammatory mediators. This aspect may be significant for the regulation of cell-associated and interstitial plasminogen activator activity

    Tumor necrosis factor increases the production of plasminogen activator inhibitor in human endothelial cells in vitro and in rats in vivo

    No full text
    The vascular endothelium plays an important role in fibrinolysis by producing tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI). The monokine tumor necrosis factor (human recombinant TNF) increased the production of PAI by cultured human endothelial cells from umbilical vein (twofold) and from foreskin microvessels (four to eight fold). This was demonstrated by titration of endothelial cell-conditioned medium with t-PA, by reverse fibrin autography, and by immunoprecipitation of [35S]PAI-1 by anti-PAI-1 IgG. TNF also induced a marked increase in PAI-1 messenger RNA (mRNA) in the cells. The stimulation of PAI activity by TNF was seen at 4 U/mL and reached a maximum at 500 U/mL. Human recombinant lymphotoxin and interleukin-1 (α and β) also stimulated the production of PAI activity, while interleukin-6 was ineffective. Separate additions of TNF or interleukin-1 (IL-1) at optimal concentrations (500 U/mL and 5 U/mL, respectively) resulted in a comparable stimulation of PAI production by endothelial cells. The simultaneous addition of both mediators resulted in an additive effect. The effect of TNF could not be prevented by the addition of polymyxin B or by anti-IL-1 antibodies. Therefore, it is unlikely that TNF acts through the induction of IL-1 secretion by endothelial cells. Two hours after a bolus injection of 250,000 U/kg TNF into rats, a fivefold increase in circulating PAI levels was found. In the next ten hours, the levels returned to normal. Blood platelets do not significantly contribute to the increase in circulating PAI, because the number of platelets did not change after TNF injection and the amount of PAI in blood platelets is not sufficient for several hours during an increase in PAI activity. The acute phase reactants, fibrinogen and α2-antiplasmin in rat plasma, were altered little if any two to 24 hours after injection of 250,000 U/kg TNF. In vitro, TNF did not change PAI production by human and rat hepatocytes in primary monolayer culture. Therefore, it is most likely that vascular endothelial cells contribute to the increased amount of circulating PAI induced by TNF in vivo. This increase in PAI activity might decrease fibrinolysis. Chemicals/CAS: plasminogen activator inhibitor, 105844-41-5; Glycoproteins; Lymphotoxin; Plasminogen Inactivators; RNA, Messenger; Tissue Plasminogen Activator, EC 3.4.21.68; Tumor Necrosis Facto

    The Relationship between aerobic fitness and recovery from high intensity intermittent exercise

    No full text
    Hemolytic uremic syndrome (HUS), the leading cause of acute renal failure in childhood, can be caused by different serotypes of vero cytotoxin (VT; i.e., Shiga toxin)-producing Escherichia coli (VTEC). Recently, VT was shown to bind to polymorphonuclear leukocytes (PMNL) in the systemic circulation of patients with HUS. This study investigated whether VT bound to PMNL could be detected in persons in households with patients with HUS. Serum antibodies against E. coli O157 and, when available, fecal samples from patients with HUS and household members were studied for the presence of VTEC infection. The circulating PMNL of 82% of the household members were positive for VT, whereas stool and/or serum examination showed only 21% positivity. Thus, current methods underestimate the number of infected persons in households with patients with HUS
    corecore