8 research outputs found
Longâterm nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems
Increased humanâderived nitrogen (N) deposition to terrestrial ecosystems has resulted in widespread phosphorus (P) limitation of net primary productivity. However, it remains unclear if and how Nâinduced P limitation varies over time. Soil extracellular phosphatases catalyze the hydrolysis of P from soil organic matter, an important adaptive mechanism for ecosystems to cope with Nâinduced P limitation. Here we show, using a metaâanalysis of 140 studies and 668 observations worldwide, that N stimulation of soil phosphatase activity diminishes over time. Whereas shortâterm N loading (â¤5 years) significantly increased soil phosphatase activity by 28%, longâterm N loading had no significant effect. Nitrogen loading did not affect soil available P and total P content in either shortâ or longâterm studies. Together, these results suggest that Nâinduced P limitation in ecosystems is alleviated in the longâterm through the initial stimulation of soil phosphatase activity, thereby securing P supply to support plant growth. Our results suggest that increases in terrestrial carbon uptake due to ongoing anthropogenic N loading may be greater than previously thought.This study was funded by Aarhus University Centre for Circular Bioeconomy, Aarhus University Research Foundation AUFF Starting Grants (AUFF-E-2019-7-1), and Marie SkĹodowska-Curie Individual Fellowship H2020-MSCA-IF-2018 (no. 839806). Ji Chen acknowledges funding support from the National Natural Science Foundation of China (41701292) and China Postdoctoral Science Foundation (2017M610647, 2018T111091) when constructing the databases. CĂŠsar Terrer was supported by a Lawrence Fellow award through Lawrence Livermore National Laboratory (LLNL). This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DEAC52-07NA27344 and was supported by the LLNL-LDRD Program under Project No. 20-ERD-055. Fernando T. Maestre was supported by the European Research Council (ERC Grant agreement 647038 [BIODESERT]) and Generalitat Valenciana (CIDEGENT/2018/041)
Predicting soil carbon loss with warming
Journal ArticleThis is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.ARISING FROM: T. W. Crowther et al. Nature 540, 104â108 (2016); doi:10.1038/nature2015
A trade-off between plant and soil carbon storage under elevated CO2
Terrestrial ecosystems remove about 30 per cent of the carbon dioxide (CO2) emitted by human activities each year(1), yet the persistence of this carbon sink depends partly on how plant biomass and soil organic carbon (SOC) stocks respond to future increases in atmospheric CO2 (refs.(2,3)). Although plant biomass often increases in elevated CO2 (eCO(2)) experiments(4-6), SOC has been observed to increase, remain unchanged or even decline(7). The mechanisms that drive this variation across experiments remain poorly understood, creating uncertainty in climate projections(8,9). Here we synthesized data from 108 eCO(2) experiments and found that the effect of eCO(2) on SOC stocks is best explained by a negative relationship with plant biomass: when plant biomass is strongly stimulated by eCO(2), SOC storage declines; conversely, when biomass is weakly stimulated, SOC storage increases. This trade-off appears to be related to plant nutrient acquisition, in which plants increase their biomass by mining the soil for nutrients, which decreases SOC storage. We found that, overall, SOC stocks increase with eCO(2) in grasslands (8 +/- 2 per cent) but not in forests (0 +/- 2 per cent), even though plant biomass in grasslands increase less (9 +/- 3 per cent) than in forests (23 +/- 2 per cent). Ecosystem models do not reproduce this trade-off, which implies that projections of SOC may need to be revised
The Functional Significance of Bacterial Predators.
Predation structures food webs, influences energy flow, and alters rates and pathways of nutrient cycling through ecosystems, effects that are well documented for macroscopic predators. In the microbial world, predatory bacteria are common, yet little is known about their rates of growth and roles in energy flows through microbial food webs, in part because these are difficult to quantify. Here, we show that growth and carbon uptake were higher in predatory bacteria compared to nonpredatory bacteria, a finding across 15 sites, synthesizing 82 experiments and over 100,000 taxon-specific measurements of element flow into newly synthesized bacterial DNA. Obligate predatory bacteria grew 36% faster and assimilated carbon at rates 211% higher than nonpredatory bacteria. These differences were less pronounced for facultative predators (6% higher growth rates, 17% higher carbon assimilation rates), though high growth and carbon assimilation rates were observed for some facultative predators, such as members of the genera Lysobacter and Cytophaga, both capable of gliding motility and wolf-pack hunting behavior. Added carbon substrates disproportionately stimulated growth of obligate predators, with responses 63% higher than those of nonpredators for the Bdellovibrionales and 81% higher for the Vampirovibrionales, whereas responses of facultative predators to substrate addition were no different from those of nonpredators. This finding supports the ecological theory that higher productivity increases predator control of lower trophic levels. These findings also indicate that the functional significance of bacterial predators increases with energy flow and that predatory bacteria influence element flow through microbial food webs.IMPORTANCE The word "predator" may conjure images of leopards killing and eating impala on the African savannah or of great white sharks attacking elephant seals off the coast of California. But microorganisms are also predators, including bacteria that kill and eat other bacteria. While predatory bacteria have been found in many environments, it has been challenging to document their importance in nature. This study quantified the growth of predatory and nonpredatory bacteria in soils (and one stream) by tracking isotopically labeled substrates into newly synthesized DNA. Predatory bacteria were more active than nonpredators, and obligate predators, such as Bdellovibrionales and Vampirovibrionales, increased in growth rate in response to added substrates at the base of the food chain, strong evidence of trophic control. This work provides quantitative measures of predator activity and suggests that predatory bacteria-along with protists, nematodes, and phages-are active and important in microbial food webs