65 research outputs found

    Foot kinematics in patients with two patterns of pathological plantar hyperkeratosis

    Get PDF
    Background: The Root paradigm of foot function continues to underpin the majority of clinical foot biomechanics practice and foot orthotic therapy. There are great number of assumptions in this popular paradigm, most of which have not been thoroughly tested. One component supposes that patterns of plantar pressure and associated hyperkeratosis lesions should be associated with distinct rearfoot, mid foot, first metatarsal and hallux kinematic patterns. Our aim was to investigate the extent to which this was true. Methods: Twenty-seven subjects with planter pathological hyperkeratosis were recruited into one of two groups. Group 1 displayed pathological plantar hyperkeratosis only under metatarsal heads 2, 3 and 4 (n = 14). Group 2 displayed pathological plantar hyperkeratosis only under the 1st and 5th metatarsal heads (n = 13). Foot kinematics were measured using reflective markers on the leg, heel, midfoot, first metatarsal and hallux. Results: The kinematic data failed to identify distinct differences between these two groups of subjects, however there were several subtle (generally <3°) differences in kinematic data between these groups. Group 1 displayed a less everted heel, a less abducted heel and a more plantarflexed heel compared to group 2, which is contrary to the Root paradigm. Conclusions: There was some evidence of small differences between planter pathological hyperkeratosis groups. Nevertheless, there was too much similarity between the kinematic data displayed in each group to classify them as distinct foot types as the current clinical paradigm proposes

    Reproducibility of postural control measurement during unstable sitting in low back pain patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Postural control tests like standing and sitting stabilometry are widely used to evaluate neuromuscular control related to trunk balance in low back pain patients. Chronic low back pain patients have lesser postural control compared to healthy subjects. Few studies have assessed the reproducibility of the centre of pressure deviations and to our knowledge no studies have investigated the reproducibility of three-dimensional kinematics of postural control tests in a low back pain population. Therefore the aim of this study was to assess the test-retest reproducibility of a seated postural control test in low back pain patients.</p> <p>Methods</p> <p>Postural control in low back pain patients was registered by a three dimensional motion analysis system combined with a force plate. Sixteen chronic low back pain patients having complaints for at least six months, were included based on specific clinical criteria. Every subject performed 4 postural control tests. Every test was repeated 4 times and lasted 40 seconds. The force plate registered the deviations of the centre of pressure. A Vicon-612-datastation, equipped with 7 infra-red M1 camera's, was used to track 13 markers attached to the torso and pelvis in order to estimate their angular displacement in the 3 cardinal planes.</p> <p>Results</p> <p>All Intraclass Correlation Coefficients (ICC) calculated for the force plate variables did not exceed 0.73 (ranging between 0.11 and 0.73). As for the torso, ICC's of the mean flexion-extension and rotation angles ranged from 0.65 to 0.93 and of the mean lateral flexion angle from 0.50 to 0.67. For the pelvis the ICC of the mean flexion-extension angle varied between 0.66 and 0.83, the mean lateral flexion angle between 0.16 and 0.81 and the mean rotation angle between 0.40 and 0.62.</p> <p>Consecutive data suggest that the low test-retest reproducibility is probably due to a learning effect.</p> <p>Conclusion</p> <p>The test-retest reproducibility of these postural control tests in an unstable sitting position can globally be considered as rather moderate. In order to improve the test-retest reproducibility, a learning period may be advisable at the beginning of the test.</p

    Foot posture in people with medial compartment knee osteoarthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Foot posture has long been considered to contribute to the development of lower limb musculoskeletal conditions as it may alter the mechanical alignment and dynamic function of the lower limb. This study compared foot posture in people with and without medial compartment knee osteoarthritis (OA) using a range of clinical foot measures. The reliability of the foot measures was also assessed.</p> <p>Methods</p> <p>The foot posture of 32 patients with clinically and radiographically-confirmed OA predominantly in the medial compartment of the knee and 28 asymptomatic age-matched healthy controls was investigated using the foot posture index (FPI), vertical navicular height and drop, and the arch index. Independent t tests and effect size (Cohen's d) were used to investigate the differences between the groups in the foot posture measurements.</p> <p>Results</p> <p>Significant differences were found between the control and the knee OA groups in relation to the FPI (1.35 ± 1.43 vs. 2.46 ± 2.18, p = 0.02; <it>d </it>= 0.61, medium effect size), navicular drop (0.02 ± 0.01 vs. 0.03 ± 0.01, p = 0.01; <it>d </it>= 1.02, large effect size) and the arch index (0.22 ± 0.04 vs. 0.26 ± 0.04, p = 0.04; <it>d </it>= 1.02, large effect size). No significant difference was found for vertical navicular height (0.24 ± 0.03 vs. 0.23 ± 0.03, p = 0.54; <it>d </it>= 0.04, negligible effect size).</p> <p>Conclusion</p> <p>People with medial compartment knee OA exhibit a more pronated foot type compared to controls. It is therefore recommended that the assessment of patients with knee OA in clinical practice should include simple foot measures, and that the potential influence of foot structure and function on the efficacy of foot orthoses in the management of medial compartment knee OA be further investigated.</p

    A case-series study to explore the efficacy of foot orthoses in treating first metatarsophalangeal joint pain

    Get PDF
    Background: First metatarsophalangeal (MTP) joint pain is a common foot complaint which is often considered to be a consequence of altered mechanics. Foot orthoses are often prescribed to reduce 1 stMTP joint pain with the aim of altering dorsiflexion at propulsion. This study explores changes in 1 stMTP joint pain and kinematics following the use of foot orthoses.Methods: The effect of modified, pre-fabricated foot orthoses (X-line ®) were evaluated in thirty-two patients with 1 stMTP joint pain of mechanical origin. The primary outcome was pain measured at baseline and 24 weeks using the pain subscale of the foot function index (FFI). In a small sub-group of patients (n = 9), the relationship between pain and kinematic variables was explored with and without their orthoses, using an electromagnetic motion tracking (EMT) system.Results: A significant reduction in pain was observed between baseline (median = 48 mm) and the 24 week endpoint (median = 14.50 mm, z = -4.88, p &lt; 0.001). In the sub-group analysis, we found no relationship between pain reduction and 1 stMTP joint motion, and no significant differences were found between the 1 stMTP joint maximum dorsiflexion or ankle/subtalar complex maximum eversion, with and without the orthoses.Conclusions: This observational study demonstrated a significant decrease in 1 stMTP joint pain associated with the use of foot orthoses. Change in pain was not shown to be associated with 1 stMTP joint dorsiflexion nor with altered ankle/subtalar complex eversion. Further research into the effect of foot orthoses on foot function is indicated. © 2010 Welsh et al; licensee BioMed Central Ltd
    corecore