65 research outputs found

    Plants assemble species specific bacterial communities from common core taxa in three arcto-alpine climate zones

    Get PDF
    Evidence for the pivotal role of plant-associated bacteria to plant health and productivity has accumulated rapidly in the last years. However, key questions related to what drives plant bacteriomes remain unanswered, among which is the impact of climate zones on plant-associated microbiota. This is particularly true for wild plants in arcto-alpine biomes. Here, we hypothesized that the bacterial communities associated with pioneer plants in these regions have major roles in plant health support, and this is reflected in the formation of climate and host plant specific endophytic communities. We thus compared the bacteriomes associated with the native perennial plants Oxyria digyna and Saxifraga oppositifolia in three arcto-alpine regions (alpine, low Arctic and high Arctic) with those in the corresponding bulk soils. As expected, the bulk soil bacterial communities in the three regions were significantly different. The relative abundances of Proteobacteria decreased progressively from the alpine to the high-arctic soils, whereas those of Actinobacteria increased. The candidate division AD3 and Acidobacteria abounded in the low Arctic soils. Furthermore, plant species and geographic region were the major determinants of the structures of the endophere communities. The plants in the alpine region had higher relative abundances of Proteobacteria, while plants from the low- and high- arctic regions were dominated by Firmicutes. A highly-conserved shared set of ubiquitous bacterial taxa (core bacteriome) was found to occur in the two plant species. Burkholderiales, Actinomycetales and Rhizobiales were the main taxa in this core, and they were also the main contributors to the differences in the endosphere bacterial community structures across compartments as well as regions. We postulate that the composition of this core is driven by selection by the two plants.peerReviewe

    Specific plasmid patterns and high rates of bacterial co-occurrence within the coral holobiont

    Get PDF
    Despite the importance of coral microbiomes for holobiont persistence, the interactions among these arenot well understood. In particular, knowledge of the co-occurrence and taxonomic importance of specific members of the microbial core, as well as patterns of specific mobile genetic elements (MGEs), is lacking. We used seawater and mucus samples collected from Mussismilia hispida colonies on two reefs located in Bahia, Brazil, to disentangle their associated bacterial communities, intertaxa correlations, and plasmid patterns. Proxies for two broad-host-range (BHR) plasmid groups, IncP-1 and PromA, were screened. Both groups were significantly (up to 252 and 100%, respectively) more abundant in coral mucus than in seawater. Notably, the PromA plasmid group was detected only in coral mucus samples. The core bacteriome of M.hispidamucus was composed primarily of members of the Proteobacteria, followed by those of Firmicutes. Significant host specificity and co-occurrences among different groups of the dominant phyla (e.g., Bacillaceae and Pseudoalteromonadaceae and the genera Pseudomonas, Bacillus, and Vibrio) were detected. These relationships were observed for both the most abundant phyla and the bacteriome core, in which most of the operational taxonomic units showed intertaxa correlations. The observed evidence of host-specific bacteriome and co-occurrence (and potential symbioses or niche space co-dominance) among the most dominant members indicates a taxonomic selection of members of the stable bacterial community. In parallel, host-specific plasmid patterns could also be, independently, related to the assembly of members of the coral microbiome

    A history of extreme disturbance affects the relationship between the abundances of nitrifiers in soil

    Get PDF
    To understand how and to what extent single or multiple perturbations can alter the relationships between the abundances of different nitrifier groups and nitrification, soil microcosms were exposed to six disturbance treatments: a heat shock, cold shock, or control conditions applied to undisturbed soils or to soils that had previously been subjected to a first heat shock. We monitored the recovery of the abundances of four main nitrifier groups (ammonia-oxidizing archaea and bacteria, AOA and AOB, respectively, andNitrobacterandNitrospiranitrite oxidizers) as well as nitrification activity for 25 days. AOA were sensitive to cold shocks, whereas AOB were not; the latter were sensitive to heat shock. Despite the variations, both groups were resilient to the first disturbance. In contrast,Nitrobacterwas affected by both disturbances, whereasNitrospirawas resistant to both shocks. Prior exposure to a heat shock affected each group's responses as well as the relationships between them. For example, AOB were more vulnerable to heat shock in pre-exposed soils, whereas under the same circumstances, AOA were resilient. Nitrification activity was resistant to the first disturbances, but a legacy effect was observed, and nitrification was highest in Heat-Heat and lowest in Heat-Cold treatments. Overall, our study shows that within soil nitrifiers, temporal patterns and legacy effects interact to result in complex disturbance responses

    CRISPR-Cas system:A new paradigm for bacterial stress response through genome rearrangement

    Get PDF
    Bacteria can receive genetic material from other bacteria or invading bacteriophages primarily through horizontal gene transfer. These genetic exchanges can result in genome rearrangement and the acquisition of novel traits that assist cells with stresses and adverse environmental conditions. Bacteria have a relatively small genome with >90% of sequences consisting of protein coding genes, stable RNA biomolecules, and gene regulatory sequences. The remaining genome fraction is primarily large repeat elements, such as retrotransposons, interspersed repeat elements, insertion sequences, and the more recently discovered clustered regularly interspaced short palindromic repeats (CRISPRs), with CRISPR-associated gene sequences (cas) that code for various Cas proteins. The CRISPR genetic locus is a series of direct repeats that are interspersed by unique spacer sequences. These unique spacer sequences represent signatures of bacteriophage genomes as the "working memory" for a bacterium to identify and destroy an invading phage genome that has previously infected the host. The protective function of the CRISPR-Cas systems are found in ∼40% of sequenced bacterial genomes, and it is often defined as bacterial acquired immunity. This chapter will elaborate the origin, structure, and function of CRISPR-Cas genetic systems acquired by bacteria, and their role in adaptive fitness while being subjected to environmental stress conditions

    Diversity of plasmodial slime molds (myxomycetes) in coastal, mountain, and community forests of Puerto Galera, Oriental Mindoro, the Philippines

    Get PDF
    AbstractNo profiling of diversity of myxomycetes has ever been conducted in one of the biodiversity hotspot areas in the Philippine archipelago, and this necessitates a swift survey of myxomycetes in Puerto Galera, Oriental Mindoro. An assessment of diversity of myxomycetes collected from seven collecting points of three different forest types in the study area showed a total of 926 records of myxomycetes. Of which, 42 morphospecies belonging to 16 genera are reported in this study. Species richness of myxomycetes was higher in collecting points that were found in inland lowland mountain forests, but the most taxonomically diverse species was found in coastal forests. Myxomycete species, namely, Arcyria cinerea, Diderma hemisphaericum, Physarum echinosporum, Lamproderma scintillans, and Stemonitis fusca, were found in all the collecting points. Manmade disturbances and forest structure may affect the occurrence of myxomycetes

    Broadcast spawning coral <i>Mussismilia hispida</i> can vertically transfer its associated bacterial core

    Get PDF
    The hologenome theory of evolution (HTE), which is under fierce debate, presupposes that parts of the microbiome are transmitted from one generation to the next [vertical transmission (VT)], which may also influence the evolution of the holobiont. Even though bacteria have previously been described in early life stages of corals, these early life stages (larvae) could have been inoculated in the water and not inside the parental colony (through gametes) carrying the parental microbiome. How Symbiodinium is transmitted to offspring is also not clear, as only one study has described this mechanism in spawners. All other studies refer to incubators. To explore the VT hypothesis and the key components being transferred, colonies of the broadcast spawner species Mussismilia hispida were kept in nurseries until spawning. Gamete bundles, larvae and adult corals were analyzed to identify their associated microbiota with respect to composition and location. Symbiodinium and bacteria were detected by sequencing in gametes and coral planula larvae. However, no cells were detected using microscopy at the gamete stage, which could be related to the absence of those cells inside the oocytes/dispersed in the mucus or to a low resolution of our approach. A preliminary survey of Symbiodinium diversity indicated that parental colonies harbored Symbiodinium clades B, C and G, whereas only clade B was found in oocytes and planula larvae [5 days after fertilization (a.f.)]. The core bacterial populations found in the bundles, planula larvae and parental colonies were identified as members of the genera Burkholderia, Pseudomonas, Acinetobacter, Ralstonia, Inquilinus and Bacillus, suggesting that these populations could be vertically transferred through the mucus. The collective data suggest that spawner corals, such as M. hispida, can transmit Symbiodinium cells and the bacterial core to their offspring by a coral gamete (and that this gamete, with its bacterial load, is released into the water), supporting the HTE. However, more data are required to indicate the stability of the transmitted populations to indicate whether the holobiont can be considered a unit of natural selection or a symbiotic assemblage of independently evolving organisms

    A putative genomic island, PGI-1, in Ralstonia solanacearum biovar 2 revealed by subtractive hybridization

    Get PDF
    Ralstonia solanacearum biovar 2, a key bacterial pathogen of potato, has recently established in temperate climate waters. On the basis of isolates obtained from diseased (potato) plants, its genome has been assumed to be virtually clonal, but information on environmental isolates has been lacking. Based on differences in pulsed-field gel electrophoresis patterns, we compared the genomes of two biovar 2 strains with different life histories. Thus, genomic DNA of the novel environmental strain KZR-5 (The Netherlands) was compared to that of reference potato strain 715 (Bangladesh) by suppressive subtractive hybridization. Various strain-specific sequences were found, all being homologous to those found in the genome of reference potato strain 1609. Approximately 20% of these were related to genes involved in recombinational processes. We found a deletion of a 17.6-Kb region, denoted as a putative genomic island PGI-1, in environmental strain KZR-5. The deleted region was, at both extremes, flanked by a composite of two insertion sequence (IS) elements, identified as ISRso2 and ISRso3. The PGI-1 region contained open reading frames that putatively encoded a (p)ppGpp synthetase, a transporter protein, a transcriptional regulator, a cellobiohydrolase, a site-specific integrase/recombinase, a phage-related protein and seven hypothetical proteins. As yet, no phenotype could be assigned to the loss of PGI-1. The ecological behavior of strain KZR-5 was compared to that of reference strain 715. Strain KZR-5 showed enhanced tolerance to 4°C as compared to the reference strain, but was not affected in its virulence on tomato

    High incidence of acquiring methicillin-resistant <i>Staphylococcus aureus</i> in Brazilian children with Atopic Dermatitis and associated risk factors

    Get PDF
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) colonization in Atopic Dermatitis (AD) patients can contribute to worsening their clinical condition. OBJECTIVE: A cohort study was carried out to determine the incidence of MRSA acquisition and its risk factors in AD children. METHODS: Patients with AD (2 months-14 years old) were followed up for about 1 year at a reference center for AD treatment in Rio de Janeiro, Brazil, from September 2011 to February 2014. Nasal swabs from patients and contacts were collected every 2 months. The SCORAD system assessed the severity of the AD. S. aureus isolates were evaluated to determine the methicillin resistance and the clonal lineages. RESULTS: Among 117 AD patients, 97 (82.9%) were already colonized with S. aureus and 26 (22.2%) had MRSA at the first evaluation. The incidence of MRSA acquisition in the cohort study was 27.47% (n = 25). The SCORAD assessments were: mild (46.15%), moderate (37.36%) or severe (16.48%). Risk factors were: colonized MRSA contacts (HR = 2.27; 95% CI: 1.16-7.54), use of cyclosporine (HR = 5.84; 95% CI: 1.70-19.98), moderate or severe AD (HR = 3.26; 95% CI: 1.13-9.37). Protective factors were: availability of running water (HR = 0.21; 95% CI: 0.049-0.96) and use of antihistamines (HR = 0.21; 95% IC: 0.64-0.75). MRSA isolates carried the SCCmec type IV and most of them were typed as USA800/ST5. CONCLUSIONS: The high incidence of MRSA acquisition found among AD patients and the risk factors associated show that an effective surveillance of MRSA colonization in these patients is needed

    Survival of Escherichia coli in the environment: fundamental and public health aspects

    Get PDF
    In this review, our current understanding of the species Escherichia coli and its persistence in the open environment is examined. E. coli consists of six different subgroups, which are separable by genomic analyses. Strains within each subgroup occupy various ecological niches, and can be broadly characterized by either commensalistic or different pathogenic behaviour. In relevant cases, genomic islands can be pinpointed that underpin the behaviour. Thus, genomic islands of, on the one hand, broad environmental significance, and, on the other hand, virulence, are highlighted in the context of E. coli survival in its niches. A focus is further placed on experimental studies on the survival of the different types of E. coli in soil, manure and water. Overall, the data suggest that E. coli can persist, for varying periods of time, in such terrestrial and aquatic habitats. In particular, the considerable persistence of the pathogenic E. coli O157:H7 is of importance, as its acid tolerance may be expected to confer a fitness asset in the more acidic environments. In this context, the extent to which E. coli interacts with its human/animal host and the organism's survivability in natural environments are compared. In addition, the effect of the diversity and community structure of the indigenous microbiota on the fate of invading E. coli populations in the open environment is discussed. Such a relationship is of importance to our knowledge of both public and environmental health. The ISME Journal (2011) 5, 173-183; doi:10.1038/ismej.2010.80; published online 24 June 2010NATO [ESP.EAP.CLG 981785]; The Soil Biotechnology Foundationinfo:eu-repo/semantics/publishedVersio

    Bacterial Genomes: Habitat Specificity and Uncharted Organisms

    Get PDF
    The capability and speed in generating genomic data have increased profoundly since the release of the draft human genome in 2000. Additionally, sequencing costs have continued to plummet as the next generation of highly efficient sequencing technologies (next-generation sequencing) became available and commercial facilities promote market competition. However, new challenges have emerged as researchers attempt to efficiently process the massive amounts of sequence data being generated. First, the described genome sequences are unequally distributed among the branches of bacterial life and, second, bacterial pan-genomes are often not considered when setting aims for sequencing projects. Here, we propose that scientists should be concerned with attaining an improved equal representation of most of the bacterial tree of life organisms, at the genomic level. Moreover, they should take into account the natural variation that is often observed within bacterial species and the role of the often changing surrounding environment and natural selection pressures, which is central to bacterial speciation and genome evolution. Not only will such efforts contribute to our overall understanding of the microbial diversity extant in ecosystems as well as the structuring of the extant genomes, but they will also facilitate the development of better methods for (meta)genome annotation
    corecore