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Abstract
To understand how and to what extent single or multiple perturbations can alter the relationships between the abundances of different
nitrifier groups and nitrification, soil microcosms were exposed to six disturbance treatments: a heat shock, cold shock, or control
conditions applied to undisturbed soils or to soils that had previously been subjected to a first heat shock.Wemonitored the recovery of
the abundances of four main nitrifier groups (ammonia-oxidizing archaea and bacteria, AOA and AOB, respectively, and Nitrobacter
andNitrospira nitrite oxidizers) aswell as nitrification activity for 25 days. AOAwere sensitive to cold shocks, whereasAOBwere not;
the latter were sensitive to heat shock. Despite the variations, both groups were resilient to the first disturbance. In contrast,Nitrobacter
was affected by both disturbances, whereas Nitrospira was resistant to both shocks. Prior exposure to a heat shock affected each
group’s responses as well as the relationships between them. For example, AOB were more vulnerable to heat shock in pre-exposed
soils, whereas under the same circumstances, AOA were resilient. Nitrification activity was resistant to the first disturbances, but a
legacy effect was observed, and nitrification was highest in Heat-Heat and lowest in Heat-Cold treatments. Overall, our study shows
that within soil nitrifiers, temporal patterns and legacy effects interact to result in complex disturbance responses.

Keywords Soil . Nitrification . Nitrogen cycle . Ammonia oxidation . Nitrite oxidation

Introduction

Nitrification, the oxidation of ammonia to nitrite and nitrate, is
an essential ecosystem function, tied to fertility and plant

productivity in terrestrial ecosystems in general. In soil, nitri-
fication rates partly determine whether N, added through urea
or ammonium fertilizers, will benefit plants or will be leached
(as nitrate) or emitted into the air (i.e., as nitrous oxide; Wang
et al. 2015). Nitrification is a two-step process, each of which
is generally carried out by distinct groups of microbes (al-
though a recently discovered group of bacteria from the genus
Nitrospira is able to perform both steps, likely at low rates)
(Daims et al. 2015; van Kessel et al. 2015; Dimitri Kits et al.
2017; Xia et al. 2018). The conversion of ammonia to nitrite is
catalyzed by ammonia-oxidizing bacteria (AOB) and/or ar-
chaea (AOA) (Leininger et al. 2006). Nitrite oxidation, the
conversion of nitrite to nitrate, is the second step of nitrifica-
tion which is catalyzed by several phylogenetically conserved
groups of nitrite-oxidizing bacteria (NOB). Ammonia oxi-
dizers (AO) and NOB depend on each other for substrate
supply and removal of toxic nitrite from the environment,
respectively (Stempfhuber et al. 2016).

Ammonia oxidation is performed by the bacterial genera
Nitrosomonas, Nitrosospira (β-Proteobacteria), and
Nitrosococcus (γ- Proteobacteria; Purkhold et al. 2000) and
by archaea from the phylum Thaumarchaeota (Leininger et al.
2006). Both AOB and AOA harbor the ammonia
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monooxygenase gene (amoA), which serves as a functional
gene marker for the identification of ammonia oxidizers in
environmental samples (Leininger et al. 2006). Studies
targeting the amoA gene have revealed ecological preferences
of these functional groups. AOA, which are facultative am-
monia oxidizers (Martens-Habbena et al. 2009), thrive at low
ammonium concentrations (Simonin et al. 2015) and low ox-
ygen concentrations (Hatzenpichler 2012). Furthermore,
AOA are the dominant ammonia oxidizers in acidic soils
(Prosser and Nicol 2012) and in the lower soil layers. In con-
trast, AOB are favored under high soil N availability (Di et al.
2009; Sterngren et al. 2015; Ma et al. 2016).

Nitrite oxidation is generally not the limiting step in nitri-
fication (Schramm et al. 1998; Okabe et al. 1999), and nitrite
oxidizers have been less extensively studied than ammonia
oxidizers. Several lineages of NOB have been identified, be-
longing to the α-, β,-, γ-, and δ-Proteobacteria (including
Nitrobacter), as well as to the phyla Nitrospirae ,
Chloroflexi, and Nitrospinae (Kitzinger et al. 2018). In soil,
Nitrospira and Nitrobacter are the most common NOB
(Attard et al. 2010). Bacteria from both groups have been
isolated from soil and identified from 16S rRNA gene se-
quences (Attard et al. 2010; Stempfhuber et al. 2016).
Nitrospira are able to persist at lower nitrite concentrations
than Nitrobacter which grow more rapidly under high N sup-
ply (Kim and Kim 2006; Le Roux et al. 2016).

As the patterns of abundance in ammonia and nitrite oxi-
dizers are revealed, the relationships between these two func-
tional groups have come into focus (Leininger et al. 2006;
Palatinszky et al. 2015). More generally, the abundance of
Nitrospira has been found to correlate to that of AOA
(Pester et al. 2014; Ma et al. 2016; Stempfhuber et al. 2016),
while the abundance of Nitrobacter has often been associated
with that of AOB (Placella and Firestone 2013; Ma et al.
2016). Nevertheless, in other cases, AOB abundances were
also correlated to Nitrospira abundance (Prosser and Nicol
2012; Xia et al. 2011). Some of these nitrifier groups may
have different environmental preferences. For example, one
study found that as the temperature of lake microcosms was
increased from 15 to 35 °C, the abundance of AOA increased
linearly, while AOB abundance decreased (Zeng et al. 2014).
More generally, changes in the relative abundances of differ-
ent nitrifier groups have been observed in response to temper-
ature changes (Avrahami and Conrad 2003; Tourna et al.
2008), fertilization (Avrahami et al. 2003; Xie et al. 2014;
Jia et al. 2019), season (Stempfhuber et al. 2016), grazing
(Pan et al. 2018), and tillage (Attard et al. 2010). Contrasted
responses of different nitrifier groups to disturbances can re-
sult in changes in their relative contributions to nitrification.
For instance, NOB are more sensitive than ammonia oxidizers
to disturbances like steam disinfestation (Roux-Michollet
et al. 2008) or other severe disturbances (Gelfand and Yakir
2008; Nowka et al. 2014), which can lead to nitrite

accumulation in soil (Roux-Michollet et al. 2008). The rela-
tionship between the microorganisms involved in the first and
second steps of nitrification may thus be broken in response to
disturbances.

While the post-disturbance resistance and resilience of the
abundances of soil nitrifier groups have previously been stud-
ied, the effect of contrasted disturbance histories with succes-
sion of a same disturbance or of different disturbances on the
relationships between different nitrifier groups has rarely been
explored (but see Calderón et al. 2018). Previously, we
showed that the microbiomes of soils (i.e., bacteria and ar-
chaea) subjected to two identical disturbances recovered more
rapidly from the second disturbance than from the first and
that when the two disturbances were different, their effect on
the community was multiplicative (Jurburg et al. 2017a). In
order to examine the effect of repeated perturbations on the
recovery of “narrow” soil functions, we exposed soil micro-
cosms to six disturbance regimes: a heat shock, cold shock, or
control conditions applied to undisturbed soils or to soils pre-
viously subjected to a first heat shock. To exclude the possi-
bility of previous exposure and adaptation to the applied dis-
turbances, we used extreme heat (65 °C) and extreme cold (−
80 °C) shocks. We monitored the abundance of AOB, AOA,
Nitrospira and Nitrobacter, and nitrification activity for
25 days after disturbance. Our aims were to (a) describe the
ecological response of each nitrifier group to single heat and
cold shocks and (b) test the effect of compounded perturbation
on the nitrifying community’s ability to perform nitrification.
In particular, we hypothesized that in soils with a heat shock
legacy, the nitrifiers selected by this first heat disturbance
would be better adapted to this disturbance so that a second
heat shock would have a less drastic effect on the nitrifiers.
Conversely, if a tradeoff exists between microbial traits that
are important to thrive under heat versus cold disturbances, a
cold shock would have a more drastic effect following a first
heat shock than in the absence of a heat disturbance legacy.
Finally, if disturbance resulted in the drastic reduction of the
dominant group of ammonia of nitrite oxidizers, we expected
to see a brief decrease in nitrification activity, followed by the
gradual recovery of this function. This study is the first to
evaluate how temporal responses and legacy effects interact
to modulate the response of nitrification-associated communi-
ties to disturbance.

Methods

Microcosm experiment and sampling

Samples from a previous microcosm experiment were used
(Jurburg et al. 2017a). Briefly, soil samples were obtained
from a well-characterized agricultural field in Buinen, the
Netherlands (52°55 ′N, 6°49′ E), in April 2013. The field
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consisted of a loamy sand soil (sand:silt:clay of 50:20:30)
with a pH (H2O) of 5.04. The seasonal variations in organic
matter, nitrate, and ammonium have been previously de-
scribed for this soil (Pereira e Silva et al. 2012). Samples
were taken from the top 15 cm of soil with shovels and
homogenized by sieving through a 4 mm sieve. A total of
87 microcosms were prepared by adding 50 g fresh soil to
200 ml glass jars, which were then covered with a loose
aluminum foil cap. Soils were maintained at 21 °C, partially
shielded from light, and moisture was maintained at 65%
with sterile water and adjusted weekly throughout the ex-
periment. Soils were allowed to stabilize in the microcosms
for 2 weeks prior to the experiment. Sampling was done
destructively in triplicate, and all microcosms were incubat-
ed for the same duration until sampling.

To evaluate the effect of disturbance history on microbial
nitrification, we prepared all microcosms simultaneously and
divided them into two groups: 45 microcosms were initially
maintained at control conditions, while 42 microcosms were
exposed to a first heat shock. Jars were uncovered, placed in
an 800-watt microwave oven (R201ww Sharp, Utrecht, the
Netherlands), and subjected to 90 s of heating at maximum
intensity (yielding an average temperature of ~ 65 °C).
Following this first round of disturbances, soils were allowed
to recover for 24 days. On the 25th day, control and initially
disturbed microcosms were subjected to either an additional,
identical heat shock, a cold shock (which consisted of placing
jars in a − 80 °C freezer for 6 h), or control conditions. This led
to a total of 6 treatments (Control-Control, Control-Heat,
Control-Cold, Heat-Control, Heat-Heat, and Heat-Cold).
Microcosms were allowed to recover for additional 25 days
after the second round of disturbances and were sampled de-
structively on days 1, 11, 18, and 25. The 25-day recovery
period was selected because we previously found that follow-
ing single, identical heat shocks, community turnover slowed
down after 25 days, whereas the community composition had
not approached its pre-disturbance conformation (Jurburg
et al. 2017b). This period was thus considered optimal to
assess possible legacy effects.

Soil DNA extraction and functional gene
quantification

DNA was extracted from 0.5 g of fresh soil using the MoBio
PowerSoil DNA Extraction Kit (MoBio Laboratories,
Carlsbad, CA, USA) following the manufacturer’s instruc-
tions, with three additional rounds of bead-beating for 30 s
(Mini-Bead Beater, BioSpec Products, Bartlesville, OK,
USA). The quality and concentration of the resulting DNA
were assessed by electrophoresis on a 0.8% agarose gel with
a SmartLadder (Eurogentec, Liege, Belgium).

Quantitative PCR (qPCR) was used to estimate the total
numbers of archaea, bacteria, AOA, AOB, and NOB

(Nitrobacter and Nitrospira). Archaeal and bacterial abun-
dances were estimated by quantifying 16S rRNA gene copies
with primers 771F/957R (Ochsenreiter et al. 2003) and
16SFP/16SRP (Bach et al. 2002, Supplementary S1).
Ammonia oxidizer abundances were estimated as the abun-
dances of bacterial and archaeal amoA genes, using primers
amo23F (Tourna et al. 2008) and crenamo616r (Nicol et al.
2008) for AOA and amoA-1F (Stephen et al. 1999) and
amoA-2R (Rotthauwe et al. 1997) according to Nicol et al.
(2008). Nitrospira NOB were estimated by targeting a
Nitrospira-specific region of the 16S rRNA gene (Graham
et al. 2007). Nitrobacter abundance was estimated by
targeting the nxrA gene using Nitrobacter-specific primers
(Wertz et al. 2008) and the qPCR protocol presented in
Attard et al. (2010). Copy numbers were calculated using
standard curves spanning six orders of magnitude (103–108).
These curves were made from reactions with linearized plas-
mids containing clones of each gene or gene segment ana-
lyzed and were used to calculate amplification efficiency.
DNA concentrations, and standards used for each reaction
are available in Supplementary Table 1. Amplification effi-
ciency (E) was calculated as E = 10–1/slope-1 and was greater
than 90% for all runs.

Nitrification activity assays

Nitrification enzyme activity (NEA) was quantified using a
modified version of Hart et al. (1994), according to
Dassonville et al. (2011). Briefly, fresh soil sub-samples
equivalent of 3 g of dried soil were suspended in 30 mL of
(NH4)2SO4 (1.25 mg N L−1) and incubated in aerobic condi-
tions with a rotary shaker (180 rpm, 28 °C). Nitrate and nitrite
productions were measured after 60, 150, 240, and 300 min in
triplicate. At each time point, 2 mL of suspension were filtered
at 0.20μm and then frozen at − 18 °C prior to analysis. Nitrate
and nitrite contents of the filtrate were analyzed using ionic
chromatography (DX120, Dionex, Salt Lake City, USA) with
a 4 × 250 mm column (IonPac AS9-HC). NEAwas calculated
as the linear increase in nitrate plus nitrite amount along time.

Statistical analyses

Statistical analyses were performed in R 3.2.3 (R Core Team
2014). The significance of changes in abundances in disturbed
soils relative to controls was calculated with two-tailed t-tests.
Correlations between the abundances of the different nitrify-
ing groups for each disturbance treatment were calculated
using Pearson’s product moment correlation coefficients and
displayed using the package corrplot (https://github.com/
taiyun/corrplot). In order to detect changes in the
relationships among the abundances of nitrifier groups and
phylogenetic groups on the one hand and between the
abundances of nitrifier groups and NEA on the other hand,

1179Biol Fertil Soils (2020) 56:1177–1187

https://github.com/taiyun/corrplot
https://github.com/taiyun/corrplot


according to disturbance treatment and across sampling dates,
we used linear mixed effect models and compared the slopes
under different disturbance treatments. A first model related
the abundance of NOB to the abundance of AO, the
disturbance treatment, and their interaction (considered as
fixed effects), while a random effect of the sampling date
was nested within treatment. We were interested in the
interaction effect that would indicate if the disturbance
modified the relationship between NOB and AO. Post hoc
analyses were conducted to compare the slopes of the
relationship for each disturbance treatment with a Tukey
method for P value adjustment using the R package
emmeans (Lenth et al. 2018). We tested a similar model with
the ratios ofNitrospiraNOB toNitrobacterNOB and of AOA
to AOB. We also tested if NEA was related to the abundances
of ammonia oxidizers and nitrite oxidizers and if those rela-
tionships were affected by the disturbance treatment using a
similar approach. Nitrifier abundances and NEA data were
log-transformed to improve normality. Model fit was checked
by inspection of residual diagnostic plots. We further tested
the influence of extreme values by comparing the model esti-
mates with and without those extremes.

Results

Single disturbance responses of nitrifier abundances

To evaluate the effect of disturbances on the abundances of
the four groups of nitrifiers, we first assessed their responses
to single heat or cold shocks in soils without heat disturbance
legacy (i.e., Control-Heat and Control-Cold). Sensitivities to
heat and cold shocks differed between functional groups
(Fig. 1). Significant differences between the abundances of
ammonia oxidizers in disturbed and control soils were ob-
served on day 11. At this time, AOB abundance in heat-
shocked soils was 14.1% of that of controls (p = 0.033) but
was unaffected by the cold shock, remaining indistinguishable
from controls throughout the experiment. In contrast, AOA
abundance in heat-shocked soils was 27.7% of that found
for controls (p = 0.025) and 6.7% of that of controls in cold-
shocked soils (p < 0.001) on day 11. The abundances of both
groups of ammonia oxidizers recovered to control levels by
day 18.

The abundance of Nitrobacter was significantly lower
than in controls in heat-shocked soils on day 18 (26.2%
that of controls, p = 0.038) and in cold-shocked soils on
day 25 (32.5% of controls, p = 0.008). Notably,
Nitrobacter abundance did not recover from the heat
shock within the period studied. The abundance of
Nitrospira was not significantly affected by heat or cold
shocks. No decreases in the abundances of total archaea
were detected in response to any treatment (p > 0.05).

Similarly, the only change we observed in the abundance
of bacteria was a slight decrease on day 25 in response to
the heat shock (p = 0.042, Fig. S1).

The heat shock legacy effect on nitrifier abundances

In soils which were pre-treated with a heat shock, an addition-
al cold shock had no effect on the AOB as compared with
Heat-Control soils at all time points (Fig. 1). This Heat-Cold
treatment had a weak effect on AOA whose abundances were
significantly lower than Heat-Control soils on day 11 (53.6%
of those in Heat-Control soils on average, p = 0.048).

Soils from the Heat-Heat treatment (which were exposed to
an initial heat shock and an additional heat shock) had lower
abundances of AOB (0.48% of those in Heat-Control soils on
average across all time points, p < 0.001), and AOB abun-
dance did not recover during the period studied. Soils from
this Heat-Heat treatment also exhibited significantly lower
AOA abundances on day 11 (15% of that found in Heat-
Control soils; p = 0.048), and AOA abundance recovered to
control levels by the end of the experiment. The abundances
of Nitrobacter and Nitrospira in Heat-Heat and Heat-Cold
soils did not significantly differ to Nitrobacter and
Nitrospira abundances observed in Heat-Control soils.
Notably, the average abundance of both Nitrobacter and
Nitrospira exposed to the Heat-Heat treatment was higher
than that found for Heat-Control soils.

Total archaea were significantly lower in the Heat-Cold
treatment than in the Heat-Control treatment only on day 18
but exhibited no detectable response to the Heat-Heat treat-
ment (Fig. S1). In contrast, total bacteria in the both the
Heat-Heat and Heat-Cold treatments were significantly
lower than in the Heat-Control on day 11. Soils from the
Heat-Heat treatment were significantly higher than in the
Heat-Control on days 1 and 18 (p < 0.05 for all compari-
sons, Fig. S1).

Disturbance legacy effect on nitrification activity

The high between-replicate variability observed for NEA
restricted our ability to detect statistically significant treat-
ment effects over time, and no clear effect of a single (heat
or cold shock) disturbance was observed (Fig. 2). In soils
previously exposed to a heat shock, NEA decreased in
response to an additional cold disturbance. In these Heat-
Cold soils, an average loss of 54% in NEA was observed
relative to the controls for days 18 and 25. By day 25, NEA
in this treatment remained significantly lower than in soils
from any other treatment (p < 0.05). In contrast, NEA was
not significantly different between Heat-Heat and Heat-
Control soils.
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Relationships between ammonia and nitrite oxidizer
abundances depending on disturbance history

In the absence of a disturbance, the abundance of AOB was
significantly correlated to Nitrospira abundance (R = 0.68,
p = 0.020) (Fig. 3). The relationship between AOB and
Nitrospira abundances was significant across the entire

experiment (χ2 = 32.955, df = 1, p < 0.05) but was modulated
by treatment (interactive effect: χ2 = 21.42, df = 5, p < 0.05;
Fig. 3). Following a single cold shock, AOB and Nitrospira
were still significantly and positively correlated, but following
a single heat shock, this relationship was no longer detected,
and instead significant correlations were observed between
the abundances of AOA and AOB (R = 0.81, p = 0.004) and

Fig. 2 Changes in nitrification
activity, NEA, according to the
disturbance history. Large circles
indicate the mean for each
treatment over time, and small
circles indicate data points.
Treatments with a legacy
disturbance are displayed as
dashed lines

Fig. 1 Changes in the
abundances of nitrifying groups
according to disturbance history.
For each panel, the effects of (left)
a single disturbance applied on a
previously undisturbed soil and
(right) the same disturbance fol-
lowing a first heat disturbance are
presented for ammonia-oxidizing
bacteria, AOB; ammonia-
oxidizing archaea, AOA; and
nitrite-oxidizing bacteria, NOB.
Large circles indicate the mean
for each treatment over time, and
small circles indicate individual
data points. The gene abundances
are displayed as normalized by
the average control values in
Supplementary S4. Treatments
with a legacy disturbance are
displayed as dashed lines

1181Biol Fertil Soils (2020) 56:1177–1187



Nitrospira and Nitrobacter (R = 0.83, p = 0.002; Fig. 3).
Notably, a correlation between AOB and Nitrobacter abun-
dances was present in the heat-shocked soils with a heat shock
legacy disturbance (i.e., Heat-Heat treatment, R = 0.82, p =
0.047).

After a single cold shock, we detected significant correla-
tions between both Nitrobacter and Nitrospira and AOB
abundances (R = 0.80 and p = 0.009 and R = 0.95 and
p < 0.001, respectively; Fig. 3), as well as a correlation be-
tween the abundances of NOB (R = 0.89, p = 0.001). In
Heat-Cold soils, we found that AOB abundance was signifi-
cantly correlated to the abundances of Nitrobacter and
Nitrospira (R = 0.84 and p = 0.005 and R = 0.73 and p =
0.026, respectively; Fig. 3). For this treatment, we also found
a significant correlation between Nitrobacter and AOA abun-
dances (R = 0.84, p = 0.005) and between AOA and AOB
abundances (R = 0.88, p = 0.002). Notably, the abundance of
total bacteria and total archaea did not correlate with the abun-
dances of any functional group, for any treatment.

We also evaluated whether the sum of nitrite oxidizers
changed in relation to the sum of ammonia oxidizers and
whether this relationship was affected by the disturbance re-
gimes. There was a positive relationship between the total
abundances of NOB and of AO across all soil samples (χ2 =
46, df = 1, p < 0.05; Fig. 4). More specifically, in the absence
of disturbance, there was a positive relationship between total
AO and total NOB (slope = 0.43, SE = 0.34). This relationship

was consistent across treatments but was modulated by distur-
bance history (χ2 = 17.3, df = 5, p < 0.05). This pattern was
driven by a weakening of the relationship between NOB and
AO abundances in soils exposed to a single heat shock (i.e.,
Control-Heat treatment, slope = 0.09, SE = 0.08; Fig. 4),
whereas for Heat-Heat soils, the correlation was shifted due
to a ~ 100-fold lower AO abundances for unaltered NOB

Fig. 3 Correlations between the abundances of the different nitrifying
groups in recently disturbed soils. Only significant correlations
(p > 0.05) are shown. The colored scale refers to the R values of
significant correlations, and the size of circles is proportional to the R

values (R > 0.68 for all displayed correlations). No significant
correlations were detected for archaea and bacteria, and these were
excluded from this figure

Fig. 4 Changes in the relationship between the total nitrite oxidizer
abundance and total ammonia oxidizers abundance according to the
disturbance history. Totals for each group were calculated as the sum
(i.e., sum of ammonia-oxidizing archaea and bacteria abundances, AOA
+ AOB). Lines are linear relationships for each disturbance history, and
gray areas represent the 95% confidence intervals. Treatments with a
legacy disturbance are displayed as dashed lines
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abundances (Fig. 4). In contrast, for Control-Cold soils, the
NOB-AO relationship was shifted due to the decreased total
NOB abundance without alteration of total AO abundance
(Fig. 4). No such overall relationships were found for the
ratios of AOA to AOB and Nitrospira NOB to Nitrobacter
NOB (χ2 = 0.004, df = 1, p = 0.95; Supplementary S2).

Relationship between NEA and nitrifier abundances

No significant correlations were detected between NEA and
any of the nitrifier abundances for any treatment. We also
investigated how NEA changed in relation to the sum or ratio
of each group of ammonia oxidizers and nitrite oxidizers to
identify whether the identity or total abundance of nitrifiers
affected NEA (Fig. S3). However, there was no detectable
relationship between NEA and ammonia oxidation (sum,
χ2 = 0.91, df = 1, p = 0.34; ratio, χ2 = 0.07, df = 1, p = 0.79)
or nitrite oxidation (sum, χ2 = 0.84, df = 1, p = 0.36; ratio,
χ2 = 0, df = 1, p = 0.98); NEA exhibited distinct responses to
each of the regimes, on average (χ2 = 20.36, df = 5, p =
0.001).

Discussion

Understanding how the relationships between different micro-
bial groups, particularly those which are important for key
ecosystem functions, respond to different perturbation scenar-
ios is crucial in the face of increasing pressures on soil eco-
systems (Smith et al. 2015). To this end, we evaluated how
four major groups responsible for nitrification in soil were
affected by different disturbance treatments and whether a
legacy of heat disturbance could modify the relationships be-
tween the abundances of these nitrifier groups. We also ana-
lyzed whether differential effects of disturbances between ni-
trifier groups may have cascading effects on soil nitrification
activity. Using extreme heat and cold disturbances avoided
any previous exposure of the soil microbial communities to
similar disturbances and thus exclude the possibility of pre-
adaptation to these disturbances, which we tested explicitly in
the Heat-Heat treatment.

Contrasted responses of the different nitrifier groups
to single heat or cold disturbance

AOB far outnumbered AOA, as has been previously found in
other agricultural soils (Di et al. 2009; Wertz et al. 2012).
However, given the low pH of our soil, we expected higher
abundances of AOA relative to AOB (Prosser and Nicol
2012). It is likely that this is explained by the high ammonium
concentration in this agricultural soil (i.e., 9.85 ppm on
average across seasons, see Pereira e Silva et al. 2012) as high
ammonium concentrations generally favor AOB even in

slightly acidic soils (Assémien et al. 2017). In undisturbed
soils, the abundance of AOB was correlated to that of
Nitrospira, a finding which aligns with previous reports
(Placella and Firestone 2013; Ma et al. 2016, but see Prosser
and Nicol 2012; Xia et al. 2011).

One day after disturbance, no significant effects were ob-
served between the abundances for any of the treatments and
the controls for any of the functional groups. This may be an
effect of the accumulation of DNA in soil following cell lysis
induced by the disturbance (i.e., relic DNA, Carini et al. 2016),
which may have biased our abundance estimates immediately
after disturbance. However, a gradual decrease and then recov-
ery in copy numbers could be observed for some functional
groups and treatments, suggesting that the DNA-based qPCR
assays were successful in detecting changes in nitrifier abun-
dances over broader temporal scales (weeks), as already dem-
onstrated in other studies (e.g., Le Roux et al. 2008).

Each of the functional groups studied exhibited distinct
responses to a single heat or cold shock. AOB only exhibited
responses to heat, consistent with their known sensitivity to
heat (Zeng et al. 2014). However, the heat shock in our study
reached ~ 65 °C and thus is most comparable with the distur-
bance experienced during strong insolation of topsoil, in ad-
dition to conditions in below topsoil exposed to steam disin-
festation of soil in the field (Roux-Michollet et al. 2008). It has
been shown that AOB follow a similar recovery pattern over
time after steam disinfestation as observed in our study (Roux-
Michollet et al. 2008). Following a heat shock, AOB reached
their lowest abundances 18 days after disturbance. This de-
layed effect may be an indirect result of successional dynam-
ics emerging from the disturbances, which has been shown to
last up to 25 days after disturbance in the same experimental
system (Jurburg et al. 2017b). In contrast to AOB, AOA were
affected by both heat and cold shocks. Previously, AOA have
been shown to exhibit higher nitrification potential activities
than AOB (Taylor et al. 2017) but a decreased diversity
(Daebeler et al. 2012) as temperatures approach ~ 40 °C. In
particular, Daebeler et al. (2012) showed that only a few AOA
phylotypes are heat-tolerant. The heat shock used in our study
likely fell outside the tolerance range of a portion of the AOA
community and therefore resulted in the decreased abun-
dances observed.

Among the AOA, a cold shock resulted in less severe, but
still significant reductions in abundance as compared with a
heat shock. Soil AOA are more abundant than AOB during
freeze-thaw cycles and include cold-adapted archaea (Wang
et al. 2012; Alves et al. 2013). For this experiment, however,
we used an extreme version of natural freeze-thaw cycles,
subjecting the microcosms to extremely cold temperatures
(− 80 °C) for 6 h. While it was not possible to monitor the soil
temperature during this period of cooling down, the 6-h expo-
sure ensured that the microcosms reached below-freezing
temperatures.
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We also found that Nitrobacter and Nitrospira were sensi-
tive to both heat and cold shocks. Previously, we found
Nitrospira to be highly sensitive to similar heat shocks, as
assessed by the sequencing of their 16S rRNA gene transcripts
(Nunes et al. 2017), and another study found the temperature
sensitivity of NOB to be similar to that of AO (Taylor et al.
2019). In the absence of disturbance, we found a strong rela-
tionship between the total number of NOB and the total num-
ber of AO in soil, whereas in soils exposed to a heat shock,
this relationship was weakened, suggesting that these func-
tional relationships can be altered, leading to decoupling.
The decoupling of AO and NOB may lead to the accumula-
tion of nitrite in soil and the release of nitrous oxide, a highly
potent greenhouse gas (Graham et al. 2007). Previously, it has
been shown that nitrate accumulation occurs in disturbed soils
(Calderón et al. 2018). To date, studies of nitrite accumulation
in soils (Giguere et al. 2017; Hink et al. 2017; Lu et al. 2018)
have focused on the contribution of AOs to nitrite accumula-
tion rather than on the potential of AOs and NOBs to become
decoupled. Our findings provide a first glimpse into how dis-
turbance may lead to functional decoupling; however, the
complexity of responses shown here warrant further study in
a larger-scale experimental setting (i.e., a higher number of
replicates and temporal samples).

Effects of compounded disturbances on nitrifier
groups

The type and order of perturbations contribute to the resilience
of disturbed soil microbial communities (Jurburg et al. 2017a;
Calderón et al. 2018). We hypothesized that the effect of a
compounded perturbation (two perturbations in succession)
would be more severe if the two disturbances differed, as the
diversity of the community’s diversity would be progressively
eroded, while resilience would be higher in soils which were
exposed to the same disturbance twice, as sensitive commu-
nity members would have already been removed by the first
exposure, and the remaining members would be better
adapted to a second exposure. For instance, it has been report-
ed that AOB in gas biofilters exposed to ammonia load shocks
of progressively increased intensity become more resistant to
extreme ammonia shocks due to a replacement of AOB pop-
ulations sensitive to high ammonia level by populations resis-
tant to high ammonia (Cabrol et al. 2016). The results obtain-
ed for AOA, Nitrobacter, and Nitrospira largely support this
view. Indeed, in response to heat shocks, we observed that
these three nitrifier groups better withstood a second heat
shock when exposed to the same disturbance. The initial heat
shock may thus have eliminated the members of each group
most susceptible to this perturbation, allowing resistant mem-
bers within the group to grow and become more dominant
during recovery, finally resulting in a more resistant and resil-
ient community in response to the second heat shock.

Similarly, a previous study found that high temperatures can
modify both the abundance and composition of the ammonia-
oxidizing community (Zeng et al. 2014).

In contrast, AOB were more sensitive to a heat shock when
previously exposed to a first heat shock and even failed to
recover 25 days following the second heat shock. This is not
consistent with the capacity of AOB to be “trained” by previ-
ous disturbances to better resist the same disturbance (e.g., in
high ammonia load in nitrifying biofilters; Cabrol et al. 2016).
However, in Cabrol et al. (2016), applying ammonia load
shocks of progressively increased intensity was needed to al-
low the AOB community to becomemore resistant to extreme
ammonia shocks. In our study, the heat shock (heating at
65 °C) was an extreme ecological challenge for AOB leading
to the loss of over 95% of the community after 18 days. It is
possible that this disturbance was too intense given the sensi-
tivity of AOB to adequately filter only the most sensitive
populations.

For all nitrifier groups, the cold shock had less impact on
their abundances than the heat shock. When pre-exposed to a
heat shock, however, the cold shock disturbance had a stron-
ger effect on the Nitrospira NOB than any other disturbance
regime. This was only visible on day 25, so it is not possible to
determine whether this was the beginning of a long-term
trend, however. We speculate that the heat and cold distur-
bances affected different portions of the Nitrospira NOB,
resulting in a multiplicative effect of the compounded pertur-
bations, as previously observed for other portions of the soil
microbial community (Jurburg et al. 2017a). Curiously, this
group was negatively affected by a single heat shock, but was
not susceptible upon re-exposure to the same heat disturbance.
This was also the case for AOA; we suspect that the more
rapid recovery observed for upon re-exposure resulted from
the elimination of sensitive group members during the first
heat shock.

Links between NEA and abundances of nitrifier
groups

While NEA exhibited a clear response to the disturbance his-
tory, no significant correlations were detected between NEA
and the abundance of any nitrifier group. Several studies have
reported strong links between NEA and AOB or AOA abun-
dance (Hesselsøe et al. 2001; Le Roux et al. 2008; Di et al.
2009), but other studies found no relationship between NEA
and the abundance of any nitrifier group (Rudisill et al. 2016;
Zhang and Ji 2018; Taylor et al. 2019). This lack of relation-
ship is not unexpected because the nitrification rate per cell
can vary depending on nitrifier community composition.
Furthermore, NEA is an emergent property from the four ni-
trifier groups measured, as previously shown for rice paddy
soils (Zhang and Ji 2018), which could explain why no rela-
tionship was observed between NEA and the abundance of
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single nitrifier group. However, NEA was not better predicted
by aggregated variables such as total AO or total NOB abun-
dances, nor abundance ratios. Because NEA measures the
quantity of functionally active nitrification in soil (Barnard
et al. 2005), it is possible that some disturbances affected the
specific activity of nitrifying cells, leading to a large
decoupling between NEA and nitrifier abundances. To test
this hypothesis, quantifying the amoA gene expression level
by RNA-based qPCR would be needed.

Conclusions

Our study reveals how complex responses to disturbances can
emerge from the relatively simple soil nitrification system,
mediated by temporal responses and legacy effects, two as-
pects of the soil microbiome which are seldom considered.
Our findings show that functional relationships between am-
monia and nitrite oxidizers can be altered and that some soil
nitrifier groups may be particularly vulnerable when repeated-
ly exposed to different disturbances. In order to disentangle
how the effects of disturbance propagate through functional
interdependencies, future research must acknowledge the
emergent complexity of the nitrification system and focus on
examining the nitrifying community at a fine temporal reso-
lution with extensive experimental replication.
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