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CHAPTER 2.11

CRISPR–Cas system: a new paradigm for bacterial
stress response through genome rearrangement

Joseph A. Hakim1, Hyunmin Koo1, Jan D. van Elsas2, Jack T. Trevors3, and Asim K. Bej1
1Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
2Biological Center, University of Groningen, Groningen, The Netherlands
3Laboratory of Microbiology, School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada

2.11.1 Introduction

Bacteria are the most abundant and diverse group of organ-
isms inhabiting the Earth. As bacterial communities are
integrated and sometimes interdependent within their envi-
ronments, the privations or impositions accompanying both
existing and new environments pose challenges to their sur-
vival (for reviews, see Cary et al., 2010; Fierer and Jackson,
2006; Kostic et al., 2013; Kristjánsson and Hreggvidsson, 1995;
Schrenk et al., 2010; Torsvik and Øvreås, 2002). Addition-
ally, dynamic ecosystems with fluctuating ecophysico-chemical
parameters cause stresses that can exceed the ranges of bacterial
functions. Some of these parameters include pH, temperature,
water, gases, depleted and/or limited nutrients leading to nutri-
ent starvation, light–dark cycles, irradiation, cell envelope per-
turbation or disruption, and cohabiting bacteriophage popula-
tions (Buckling and Rainey, 2002; Burgess et al., 1999; Gómez
and Buckling, 2011; Middelboe et al., 2001). To counter bac-
teriophage attack, some bacteria have restriction modification
systems (Tock and Dryden, 2005; see Chapter 2.10). In addi-
tion, genome rearrangements or reprogramming cellular func-
tions (i.e., evolution) conducive to their fitness in the ecosystem
has been proposed (Gurung et al., 2001; Rubin and Leff, 2007;
Spano and Massa, 2006).

Some of the known genetic-based mechanisms (e.g., trans-
formation, conjugation, transduction, and recombination)
contributing to genome rearrangements are considered to be
the means for bacterial cells evolving with the constraints of
environmental stresses. However, recently discovered clustered
regularly-interspaced short palindromic repeats (CRISPR) and
the CRISPR-associated proteins (Cas) (Jansen et al., 2002) are
recognized as a unique strategy utilized by certain bacterial
species.

Initial recognition of the CRISPR–Cas array occurred in 1987
through the work of Ishino et al. (1987) while characterizing
the alkaline phosphatase isozyme gene (iap) in Escherichia coli.
It was discovered that the 3′ end of the amplified segment of
genome containing iap consisted of a series of homologous
repeats of nucleotides, arranged in dyadic symmetry. Addition-
ally, it was reported that these repeats were interspaced among
sequences of 32 nucleotides that contained no homology within
the genome (Ishino et al., 1987). Although the functional sig-
nificance of the repeat sequences was not apparent in their
discovery, a predictive role was suggested for messenger RNA
(mRNA) stability, due to an appearance of the internal post-
transcriptional folding of the RNA. Jansen et al. (2002) offered
an insight into the structure and function of the loci, and coined
the terms “CRISPR” and “Cas”, collectively referred to as the
CRISPR–Cas system (Figure 2.11.1).

In subsequent research, the presence of “structural artifacts”
was acknowledged, characterizing a species-conserved leader
sequence upstream of the repeat region, and four closely located
cas genes synchronous with the CRISPR (Jansen et al., 2002).
The amino acid sequence alignment of Cas1 proteins from var-
ious strains of E. coli showed significant homology, whereas
Cas1 from various species of Streptococcus exhibited poor
homology, depicting the species-specific conservativeness of
this protein toward its target CRISPR sequences (this study)
(Figure2.11.2a,b).

Similar results were observed when the amino acid residues of
Cas1 proteins from Myxococcus xanthus and Pectobacterium
atrosepticum were aligned (data not shown). The comparison
of the amino acid residues of the Cas2 protein of E. coli displayed
a better homology as compared to various species of Strepto-
coccus (this study) (Figure 2.11.3a,b). Evolution of interspecies
diversity of the Cas1 and Cas2 proteins was further supported by
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Figure 2.11.1 Schematic diagram for the CRISPR–Cas system in bacteria. Extraneous mobile genetic elements enter the recipient bacterial cells through
various mechanisms (transformation, transduction, and/or conjugation). The process follows three steps: (i) Once inside the cell, Cas proteins target
foreign stretch of nucleotides, excising a portion of the strand (protospacer) to be incorporated into the CRISPR array, at a location adjacent to the leader
sequence in most bacteria. This process is hypothesized to depend on Cas1 and Cas2 proteins for acquisition of the protospacer. (ii) Transcription of the
CRISPR array initiates at an upstream AT-rich region upon infection by foreign nucleotides. Long pre–CRISPR RNA (pre-crRNA) is refined into crRNA,
and stabilized through dyadic symmetry of the repeat region. CRISPR–Cas Type I and III systems utilize Cas endonucleases, yet CRISPR–Cas II utilizes a
trans-activating crRNA (tracrRNA), which complements the pre-crRNA and initiates cleavage through RNase III or Cas9. (iii) Spacer matching foreign
nucleotide strand is incorporated into a Cas complex, which acts as a guide to locate nucleotides belonging to a repeated invasion by mobile genetic
elements. In CRISPR–Cas Type III, this complex includes tracrRNA. This targeting initiates fragmentation of foreign genetic material.

the poor homologies obtained from the alignment of the amino
acid residues of E. coli, M. xanthus, P. atrosepticum, and vari-
ous Streptococcus species (this study) (Figures 2.11.4a,b).

Later, research on Yersinia pestis, Streptococcus ther-
mophilus, and Streptococcus vestibularis determined the non-
repetitive spacer region to be segments of exogenous DNA,
from bacteriophage and plasmid origin, that was integrated into
the host cell genome in a polar fashion, adjacent to the leader
sequence (Bolotin et al., 2005; Pourcel et al., 2005). Recently, the
polar addition scheme of spacer integration was questioned, as
some archaea, namely Sulfolobus solfataricus, have been exper-
imentally shown to integrate spacers at random locations inter-
nally, as opposed to locations near the leader sequence in the
CRISPR array (Erdmann and Garrett, 2012). Nonetheless, there
appears to be a loss of a previously embedded spacer in the array
after integration of new spacer content, as in the CRISPR I array

in Streptococcus agalactiae (Lopez-Sanchez et al., 2012), sug-
gesting a dynamic nature of spacer content, a mechanism that
assists in response to changing environments of mobile genetic
elements.

Extrapolating from these research milestones, further
genome-mapping efforts have revealed CRISPR–Cas to be
present in many prokaryotes, with the current estimate at >40%
for bacteria and, remarkably, >90% in archaeal species (Grissa
et al., 2007). Interestingly, there also exists an intraspecies
incongruity of CRISPR arrays, as some strains may harbor
the CRISPR–Cas system within their genome, and others may
not. The absence of the CRISPR spacer repeats is typically
accompanied by a lack of associated cas genes, leading to the
assignment of functional interdependency of the artifacts in
the interference of exogenous DNA (Touchon et al., 2011).
The number of spacer sequences within any particular strain
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Figure 2.11.3 Multiple sequence alignment of the amino acid residues of the Cas2 protein sequences from (a) Escherichia coli strains; and (b)
Streptococcus species. The Cas2 protein sequences were downloaded from the NCBI protein database (http://www.ncbi.nlm.nih.gov/protein/) and
aligned with MAFFT alignment (MAFFT version 7, http://mafft.cbrc.jp/alignment/server/). The aligned protein sequences were managed and edited using
BioEdit (Hall, 1999). The identical sequences are shadowed by dark gray, and similar sequences are shadowed by light gray. The alignment result showed
that Cas2 protein sequences aligned well among various E. coli strains, whereas the Streptococcus species exhibited poor sequence homology.

http://www.ncbi.nlm.nih.gov/protein/
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appears to be finite, as spacer quantity is maintained through
removal of internal spacer sequences after integration of new
spacers (Reyes et al., 2008). This knowledge has been used
as a means to subtype species on the basis of spacer count,
coined “spoligotyping,” as in “spacer typing” (Van der Zanden
et al., 2002). Intraspecies variation is further compounded as the
nature, number, and arrangement of the Cas and other CRISPR-
associated genes may vary across a single species (Pourcel and
Drevet, 2013). Even the number of CRISPR–Cas systems in a
genome may differ across the same species of bacterium (Carte
et al., 2014).

Although 12 subtypes have been recognized across bacterial
species, it is generally agreed that three major types of CRISPR–
Cas systems occur in bacteria, designated as Types I, II, and III
– with Type I considered to be the most common (Makarova
et al., 2011a,b, 2013). Each type exemplifies a distinctive archi-
tecture of cas genes, varying in gene location relative to the
CRISPR array, gene structure, and combinations of various cas
genes (Makarova et al., 2011b). Among all of the cas genes iden-
tified thus far, cas1 and cas2 have been recognized to be present
in all CRISPR–Cas systems, with cas1–cas6 considered the core
genes of the CRISPR–Cas system (Haft et al., 2005; Horvath
and Barrangou, 2010). The target of the CRISPR–Cas mecha-
nism is typically, but not always, double-stranded DNA, as it has
been discovered that the Type III-B subtypes found in Thermus
thermophilus target exogenous RNAs (Sorek et al., 2013; Staals
et al., 2013).

2.11.2 Mechanism

2.11.2.1 The integration of spacer content
The CRISPR–Cas system functions as adaptive immunity
through the complementation of a CRISPR RNA (crRNA) to
an invading DNA element, typically of viral or plasmid ori-
gin. This causes the disruption of the foreign DNA through a
series of nuclease-related events (Brouns et al., 2008). Within
the CRISPR array, crRNA is first transcribed as a long single-
stranded product, and then processed by the Cas and CRISPR-
related proteins, to produce short RNA sequences, which are
57 nucleotides in E. coli (Brouns et al., 2008). This sequence
is embedded into the Cas proteins (in which the specific Cas
or CRISPR-related proteins will differ across bacterial species)
and functions as a “guide” to locate complementary sequences
on foreign DNA, perhaps introduced by a bacteriophage or a
plasmid (Brouns et al., 2008). The process from spacer acquisi-
tion to the RNA-mediated “immunity” or “protection” from the
invading DNA occurs in three stages: (i) adaptation, (ii) expres-
sion, and (iii) interference (Figure 2.11.1) (Iranzo et al., 2013;
Van Der Oost et al., 2009).

2.11.2.2 Adaptation
The acquisition of spacer content is dependent on invasion of
foreign exogenous genetic elements, termed protospacers prior

to integration, and is a fundamental requisite for the immu-
nity of the CRISPR–Cas system (Bolotin et al., 2005; Mojica
et al., 2005, 2009; Pourcel et al., 2005). Of the three stages, evi-
dence of the mechanism of initiation, as well as the underlining
process of protospacer target and integration, has largely been
inscrutable (Yosef et al., 2012). This seems to be due to dif-
ficulties with recreating the adaptation stage under laboratory
conditions, which contrasts the proficient and abundant integra-
tion of spacers under natural conditions (Andersson and Ban-
field, 2008; Tyson and Banfield, 2008; Weinberger et al., 2012;
Westra and Brouns, 2012). Some evidence has been forthcom-
ing through investigation of Pectobacterium atrosepticum and
E. coli (Datsenko et al., 2012; Swarts et al., 2012; Yosef et al.,
2012), strongly associating Cas1 and Cas2 as the hypothesized
universal proteins responsible for spacer acquisition (Datsenko
et al., 2012; Yosef et al., 2012). This is supported by evidence that
both Cas1 and Cas2 proteins function in the absence of other
CRISPR-related proteins to target and acquire spacers (Yosef
et al., 2012). In E. coli, Cas1 and Cas2 have been shown to form a
complex that, once dissociated, will terminate spacer acquisition
(Nuñez et al., 2014). Additionally, a specialized 2 to 5 nt motif
accompanying the foreign DNA has been observed to be a tar-
get for spacer acquisition: the protospacer adjacent motif (PAM),
a recognizable sequence that has been observed to be a target
across various bacterial CRISPR systems, and is hypothesized to
be organism specific (Bolotin et al., 2005; Mojica et al., 2009,
Shah et al., 2013). This mode of adaptation has been termed the
“naı̈ve method”, as the spacer acquisition occurs de novo (Fin-
eran et al., 2014).

Another type of adaptation has been observed within the
K12 strain of E. coli, in which spacer acquisition was demon-
strated to be associated with bacteriophage stress (see Chapter
2.10). As bacteria have evolved CRISPR–Cas systems of adap-
tive immunity, so too have phages and mobile elements to evade
disruption. Specifically, mutations in the PAM sequence adja-
cent to protospacer regions allow for the avoidance of CRISPR-
mediated immunity. As a mechanism, once a spacer sequence
becomes ineffective as a crRNA for immunity through homol-
ogous complementation, the same sequence will act as a guide
to partially complement stretches of genomic content on for-
eign mobile genetic elements (Fineran et al., 2014). It has
been observed that while utilizing CRISPR-associated proteins,
namely Cas1, Cas2, and Cas3, alongside a guide RNA from the
original spacer and an additional Cascade protein, the CRISPR
machinery will recognize stretches of foreign DNA and select
fragments to be incorporated as new spacer content (Datsenko
et al., 2012; Fineran et al., 2014). This mechanism of adaptation
has been designated the “priming” method of spacer acquisition
(Fineran et al., 2014), and it has recently begun to hold valid-
ity across other bacterial species, such as Haloarcula hispan-
ica (Li et al., 2014). As observed in E. coli, once the sequence
has been acquired, insertion of the protospacer occurs through a
staggered cleavage, followed by ligation, at the junction between
the leader sequence and the first repeat, through the catalytic
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potential of the metal-binding core of Cas1 in the Cas1–Cas2
complex (Arslan et al., 2014). The use of bioinformatics tools
revealed that occasionally the spacer sequences can be inserted
internally within the CRISPR array, which was found to be
unique as compared to the conventional process of the polar
addition of spacers at the 5′ end of the CRISPR array (Erdmann
and Garrett, 2012).

2.11.2.3 Expression
Although some mechanistic variation exists among the three
types of CRISPR–Cas, there are common elements shared by all
types, such as the transcription of the long pre-crRNA product,
initiated at the upstream AT-rich region, followed by matura-
tion of the transcript into short crRNA through cleavage internal
to the repeat sequence (Horvath and Barrangou, 2010). Types I
and III show a similarity in processing of the pre-crRNA prod-
uct, as cas genes encoding endoribonucleases are responsible for
cleavage, whereas Type II is dependent on a transactivating RNA
(tracrRNA), which complements regions on the pre-crRNA and
initiates cleavage through RNase III and Cas9 activity (Westra
et al., 2014).

2.11.2.4 Immunity
The CRISPR–Cas immunity occurs when crRNA is ushered by
Cas proteins to complement stretches of nucleotides belonging
to the mobile genetic elements of repeat invasions (Brouns et al.,
2008). As observed in the CRISPR–Cas Cse-subtype of E. coli,
the matured crRNA is embedded into a complex of Cas proteins
termed “CASCADE” (CRISPR-associated complex for antiviral
defense), which is composed of CasA, CasB, CasC, CasD, and
CasE (Brouns et al., 2008; Jore et al., 2011). After incorporation
of the guide RNA into CASCADE, the complex is guided to the
foreign element. Through the activity of an additional Cas pro-
tein, Cas3 (nuclease–helicase), foreign nucleotides will be frag-
mented (Figure 2.11.1) (Jore et al., 2011).

2.11.3 Stress response of CRISPR

2.11.3.1 Bacteriophage stress
Interest has been placed on the CRISPR–Cas system, specifi-
cally addressing its function in adaptive immunity against preda-
tory phages and harmful mobile genetic elements. Regarding
stresses in the environment, bacteriophages have a prominent
effect on shaping microbial communities in many niches, such as
marine ecosystems (Mojica and Brussaard, 2014), temperate soil
(Williamson et al., 2013), and even the more extreme ecosys-
tems such as Arctic soil (Allen et al., 2010; see Chapter 10) and
Antarctic lakes (Filippova et al., 2013; Lauro et al., 2010). Not
surprisingly, bacteriophages imposing a lytic cycle will decrease
microbial populations of susceptible species, with mortality esti-
mates of about 50% in some environments (Fuhrman and Noble,
1995). Such an impact may affect the biotic ecosystem at a

grander scale, especially when only select species are targeted.
Decreases in select species may confer a shift in populations,
thus leading to a change in nutrient cycling and metabolism,
an occurrence that has been investigated in the context of the
microbiome (Fuhrman and Noble, 1995; Koskella, 2013; Reyes
et al., 2012).

The effect of bacteriophages in causing bacterial stress is not
restricted to population decline and species dynamics. Latent
phages in the lysogenic life cycle, or prophages that integrate
into a bacterial host as part of the life cycle, may confer a selec-
tive advantage of the host bacteria – a mechanism to increase
persistence of the phage by enhancing the survivorship of the
phage-harboring host (Bossi et al., 2003). Additionally, phage-
mediated gene trafficking, or transduction, may offer a fitness
advantage to certain bacteria over others in the natural ecosys-
tem by inserting DNA into the genome of the host that assists
in metabolic function – again, conferring a fitness advantage to
both the bacteria and the phage (Mann et al., 2003). Although
seemingly benign, these strategies may inadvertently cause stress
to cohabiting bacteria through competition, creating shifts in
the microbial populations and thereby affecting the ecosystem
function.

The effect of CRISPR–Cas systems in response to lytic phages
has been researched in various bacterial species, in which a fit-
ness benefit was established (Brouns et al., 2008; Marraffini
and Sontheimer, 2008; Sorek et al., 2008). However, CRISPR–
Cas is not limited to protection against lytic phages, as it can
interfere with the genome of lysogenic phages. In 2010, the
range of CRISPR–Cas potential against invading genetic ele-
ments was investigated in E. coli in the presence of λ bacte-
riophage (Edgar and Qimron, 2010). A range of activity against
the phage in each life cycle was observed. First, in the presence
of a lysogenetic phage, CRISPR–Cas-mediated interference was
shown to target segments of the phage genome, interrupting the
cycle within the cell. Although segments of the phage genome
responsible for lysogenization were not specifically targeted by
CRISPRs, this is evidence in favor of broad CRISPR function
in preserving the bacterial genome. CRISPR–Cas response to
prophage integration was also investigated, as the CRISPR–Cas
system was induced after the integration of the phage DNA seg-
ments. It was observed that the CRISPR harboring E. coli cleared
prophage DNA in a small portion, showing that those bacte-
ria harboring a spacer congruent with the integrated λcI857kan
(kanamycin resistant temperature sensitive cI variant) prophage
had a ≈500-fold increase in survival, even after the expected
lytic cycle induction of the phage at a temperature increase
(42 ◦C) (Edgar and Qimron, 2010). Yet largely, CRISPR–Cas-
mediated apoptosis occurred through self-targeting, or the
prophage cycle was too progressed for timely removal, leading
to cell death of the bacteria affected by the prophages. In addi-
tion to the apparent function of CRISPR–Cas in response to
bacteriophage stress, CRISPR–Cas systems are functional under
many phage circumstances, an area that requires additional
research.
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2.11.3.2 Fruiting body and starvation in
Myxococcus xanthus
When subjected to a nutrient-deprived environment, certain
bacteria have been observed to undergo colony structure adjust-
ments to cope with starvation stresses. One such adjustment,
fruiting body formation, has recently been associated with the
CRISPR–Cas system in Myxococcus xanthus (Viswanathan
et al., 2007a). During periods of long starvation, myxobacte-
rial cells undergo fruiting body development through a process
of cell–cell contact interaction (Kiskowski et al., 2004; Sozinova
et al., 2005). The development from aggregation to sporulation,
including rippling that accompanies and precedes aggregation
(Shimkets and Kaiser, 1982), has been linked to the production
of five intercellular signals, canonically named the A, B, C, D, and
E factors (Boysen et al., 2002; Downard et al., 1993; Kim et al.,
1992). Crucial to the fruiting body process, the A factor signal
is initiated by starvation, which induces the transcription of the
FruA DNA-binding response regulator (Ellehauge et al., 1998;
Viswanathan et al., 2007b). Additionally, cell–cell contact will
initiate the C factor, encoded by csgA gene (Kaiser et al., 2010),
which will activate FruA to induce devR and devS genes (Jels-
bak and Søgaard-Andersen, 2000). The devRS genes have been
identified to be a part of a larger locus that includes devT gene –
which stimulates FruA synthesis to positively regulate devR and
devS genes (Boysen et al., 2002).

Recent analysis of the dev genes of M. xanthus revealed an
association between the dev locus and the CRISPR–Cas array.
Specifically, genome mapping has placed the locus as nested
within the arrangement of the cas genes of M. xanthus, and
has determined devT, devR, and devS genes to be cas8, cas7,
and cas5, respectively (Boysen et al., 2002; Jelsbak and Søgaard-
Andersen, 2000). The consequential transcription of the dev
genes in response to starvation occurs alongside the cas genes
(Boysen et al., 2002), with only a portion of the CRISPR repeat
segment transcribing with the dev locus. This CRISPR array por-
tion contains a spacer corresponding to an integrase enzyme,
necessary for the lysogenization of the Mx8 bacteriophage into
the genome (Viswanathan et al., 2007a). An interesting hypoth-
esis proposed by Viswanathan et al. (2007a,b) was that, mecha-
nistically, the Mx8 spacer is transcribed as a crRNA in defense
against the Mx8 bacteriophage, as the M. xanthus may be par-
ticularly susceptible to lysogenization during starvation periods.
Little evidence exists to verify the physiological importance of
transcription of the Mx8 spacer. However, considering the co-
transcription of the dev and cas genes, and the genetic architec-
ture of the dev locus in relation to the CRISPR–Cas array, there
may be an association of the two systems in response to envi-
ronmental stresses, but the precise role of the system remains
unknown.

2.11.3.3 DNA damage repair
Prior to adopting the Cas designation, the genes associated
with the CRISPR system of exogenous DNA silencing were

linked with DNA repair, an observation that came through the
genomic analysis of thermophilic bacteria (Makarova et al.,
2002). Generally, extremophile bacteria inhabiting harsh niches
will have a phenotype and underlying genotype that confer sur-
vival under the stress of DNA-damaging conditions (Stan-Lotter
and Fendrihan, 2012). For example, desiccation, UV, and gamma
radiation are common DNA-damaging agents in Antarctica, yet
bacteria such as Pseudomonas syringae Lz4W can repair exces-
sively damaged DNA and otherwise lethal amounts of genome
fragmentation (Pavankumar et al., 2010; Sinha and Häder, 2002;
see Section 8).

A gene association exists between the Cas genes and DNA
repair enzymes in the E. coli CRISPR–Cas type I-E (Babu
et al., 2011). Analysis of the Cas1 protein (YgbT in E. coli)
revealed a multifaceted nuclease activity capable of processing
substrates of branched DNA, such as 5′ flaps, Holiday junc-
tions, and replication forks (Babu et al., 2011). In the same
research, co-purification of Cas1 revealed an association of
Cas1 with RuvB, a helicase that functions in the RuvAB com-
plex, which migrates Holiday junctions for the eventual RuvC-
mediated double-stranded break of the target DNA (West, 1996).
Additionally observed was an association of Cas1 with RecB
and RecC, two enzymes that are crucial to the recombinational
restoration of template imperfections in DNA (Kowalczykowski,
2000). RecB and RecC will form a complex with RecD, which
inserts at the nicks induced by the RuvABC system, to initi-
ate the homologous recombination of DNA (Kowalczykowski,
2000). RecBCD-mediated DNA repair was also identified, and
examined, in the extremophile Antarctic bacteria P. syringae
Lz4W (Pavankumar et al., 2010). In P. syringae, deletion of
the RecBCD led to increased susceptibility to DNA damage by
UV radiation, as well as decreased viability when exposed to
low temperatures (4 ◦C) (Pavankumar et al., 2010; Regha et al.,
2005).

In addition to its observed function in the CRISPR–Cas sys-
tem of immunity, the E. coli Cas1 (YgbT) interacts with RecB to
repair DNA. Many CRISPR–Cas-containing bacteria possess the
Cas4 gene (Haft et al., 2005), and in certain species such as M.
xanthus, the Cas1 and Cas4 gene sequences appear overlapping
with one another, emphasizing the association of the two gene
products (Zhang et al., 2012). E. coli does not contain the Cas4
gene per se, yet there is a homology between the Cas4 and the
RecB exonuclease, and an apparent association of the two pro-
teins in DNA repair (Jansen et al., 2002). Cas3 was discovered
to contain functional domains consistent with helicases belong-
ing to superfamily 2 of DNA and RNA metabolism (Jansen et al.,
2002). Although the CRISPR array of spacer repeats has not been
verified to function in DNA repair, interestingly, the RecBCD
system has previously been implicated in the interruption of
foreign linear DNA, a characteristic of CRISPR–Cas immunity
(Dillingham and Kowalczykowski, 2008). This is a noteworthy
observation implicating a dual functionality of the cas genes in
both immunity and host DNA repair.
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2.11.3.4 Envelope stress as a trigger for
CRISPR–Cas induction
Central to coping with environmental stress is the DnaK pro-
tein, which, in E. coli, is correlated with the heat stress response
(see Section 13). Tilly et al. (1983) investigated the DnaK pro-
tein and its production during temperature increases in E. coli;
and, in 1984, Bardwell and Craig (1984) reported their find-
ings, classifying the protein as a heat shock protein (HSP) due
to its previously described homology to known HSPs across
many eukaryotic and prokaryotic genomes. Subsequent inves-
tigations elucidated the role and function of DnaK in folding
and chaperoning of newly synthesized proteins in the cytosol
(Pérez-Rodŕıguez et al., 2007), for export across the cytoplasmic
membrane via the Tat (twin-arginine translocation) pathway
(Graubner et al., 2007). Crucial to envelope integrity is the effi-
cient transport of folded proteins and the avoidance of amassing
misfolded or unfolded proteins in the periplasm (Raivio, 2005).

To test the association of the CRISPR–Cas system with the
DnaK chaperone protein in the context of envelope stress (see
Section 18), the involvement of CasE of E. coli in response to
extracellular stress has been reported (Pérez-Rodŕıguez et al.,
2011). Plasmids containing sstorA fused to gfp (sstorA-gfp)
were transformed into a DnaK-deficient (ΔDnaK) E. coli cul-
ture – which causes the accumulation of insoluble unfolded
ssTorA product, conferring envelope stress (Deuerling et al.,
1999; Lim et al., 2009). ssTorA is a bacterial Tat-specific E. coli
trimethylamine N-oxide (TMAO) reductase (TorA) signal pep-
tide, plus the first four residues of mature TorA (ssTorA), that
helps reduce TMAO into trimethylamine (TMA) as part of the
electron transport chain (Fisher et al., 2006). It was discov-
ered that endogenous sequences consisting of spacers homol-
ogous to sstorA silenced the plasmid and subdued expression
of the misfolded protein (Pérez-Rodŕıguez et al., 2011). Atten-
tion was placed on the BaeSR regulatory system, in which BaeS
resides in the membrane and phosphorylates the BaeR tran-
scription activator in the event of envelope stress (MacRitchie
et al., 2008). BaeR is a response regulator of the putative BaeSR
two-component signal transduction system for regulation of E.
coli multidrug transporter genes (Baranova and Nikaido, 2002).
As BaeR was known to activate CasA in E. coli (Baranova and
Nikaido, 2002), the binding of BaeR to CasA in the envelope
stress due to inefficient protein translocation was inspected, and
it was observed that BaeR binds internal to the CasA gene.
This association with membrane-maintaining components has
elucidated a potential role of CRISPR–Cas in membrane
preservation.

An additional association of CRISPR–Cas to membrane
integrity was investigated in the pathogen Francisella novi-
cida, where membrane stress was offset by the CRISPR–Cas sys-
tem, specifically through the function of Cas9 (Sampson et al.,
2014). F. novicida must cope with many antimicrobial agents
residing within the target host organism and the macrophages
that engulf the bacteria (Jones et al., 2012). Unique to this

bacterium is its ability to survive exposure to certain antimi-
crobials, namely those that are cationic peptides (Balagopal
et al., 2006). In their research, polymyxin B, a membrane-acting
antimicrobial agent used to study the effect of cationic pep-
tide antimicrobials (Mohapatra et al., 2007; Wang et al., 2006),
was administered to F. novicida lacking the Cas9 gene. It was
observed that at low doses (100 μg/mL as compared to the lethal
dose of 800 μg/mL), the ΔCas9 bacteria displayed a suscepti-
bility to the antimicrobial as compared to the wild-type strain
(Sampson et al., 2014). In addition, two small RNAs that asso-
ciate with Cas9, tracrRNA and small Cajal body–specific RNA
(scaRNA), were also investigated. It was determined that, upon
deletion of the two RNA products, a similar susceptibility to that
of Cas9 mutants was observed.

Besides the observed association of Cas9 to membrane stress
in F. novicida, the Cas9 gene of Streptococcus pyogenes
(SpCas9) is a crucial factor in the Type II CRISPR–Cas sys-
tem, coding for an RNA-guided DNA endonuclease enzyme.
This SpCas9 enzyme has been reported to perform efficient
RNA-guided sequence-specific DNA cleavage. By modifying the
SpCas9 and the CRISPR system to create a gene-editing tool,
it has become possible to utilize a predetermined RNA guide
strand to target a specific location in the genome of a target cell’s
DNA, effectively utilizing the Cas9 endonuclease property to
nick the target and nontarget strand of a double-stranded DNA
(Cong et al., 2013). This could be used either to disrupt a gene
for knockout study or to allow the cell’s innate excision repair
mechanism to incorporate a new strand of DNA, which may be
introduced by the researcher to the system, allowing the DNA
to integrate at the location of the site of cleavage (Jinek et al.,
2012; Mali et al., 2013). Recently, the comparatively smaller
Cas9 protein of the Type II CRISPR–Cas system of Staphylo-
coccus aureus (SaCas9) was proposed as a more effective nucle-
ase for the RNA-guided genome-editing strategy (Ran et al.,
2015). Homologous Cas9 genes are related, and the degree of
their similarity is dependent on the CRISPR–Cas subtype: Type
II-A, Type II-B, or Type II-C (Fonfara et al., 2013). Conserved
across these homologs are the amino acids of the NHN and RuvC
domains, which nick the target and nontarget strand, respec-
tively (Fonfara et al., 2013; Jinek et al., 2012). However, between
the catalytic domains are a variability of amino acids (Chylin-
ski et al., 2014; Fonfara et al., 2013). A study by Fonfara et al.
(2013), using S. pyogenes (CRISPR–Cas Type II-A) as the model
bacteria, demonstrated that only the Cas9 genes belonging to
bacteria that possess a closely related Type II-A system can be
interchanged while still maintaining CRISPR–Cas functionality.
Particularly, it was shown that the key differences in the Cas9
protein functionality across the various Type II subtypes were in
the maturing crRNA, as well as the stabilization in the tracrRNA
and pre-crRNA duplex, which is the eventual complex that tar-
gets invading foreign genetic elements (Fonfara et al., 2013). The
striking diversity in the structure and gene-editing efficiency of
the Cas9 between the two aforementioned bacteria reveals an
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evolutionary divergence, potentially tailoring to the immunity
requirements of the bacteria, as it is targeted by species-specific
phage infection.

As the evidence implicating the CRISPR–Cas system in enve-
lope stress amasses, speculation has arisen regarding the involve-
ment of membrane cues to trigger the CRISPR–Cas system.
The role of heat-stable nucleoid structuring (H-NS) protein in
the suppressive function of CasA transcription in the E. coli
CRISPR–Cas system has been reported (Pul et al., 2010). The
leucine response transcription factor, LeuO, was found to be
a positive regulator of CasA (Westra et al., 2010). The H-NS–
LeuO regulation function was later observed in Salmonella
enterica serovar Typhi (Medina-Aparicio et al., 2011). An addi-
tional regulatory function of H-NS has been proposed indicat-
ing that the protein is sequestered from the CRISPR–Cas array in
the event of exogenous genetic penetration, promoting the tran-
scription of the CRISPR–Cas system (Navarre et al., 2006, 2007).
With this information pooled, Tracy Raivio (2011) summarized
a potential mechanism for the initiation of CRISPR–Cas induc-
tion. It was hypothesized that a signal exists at the membrane,
which is triggered through either the penetration of exogenous
DNA or the production of atypical protein products through for-
eign DNA. This signal initiates the phosphorylation of BaeR by
BaeS at the membrane, which then transfers to the CRISPR–Cas
system for transcription initiation. Additional positive regula-
tion of the CRISPR–Cas locus through LeuO will occur as H-NS
binds with exogenous DNA. Although key components in the
cascade are yet to be determined, this offers a deeper look into
the CRISPR–Cas system, elucidating the induction of CRISPR–
Cas in the event of membrane stress, and thereupon providing
insight into the initiation of CRISPR–Cas as it pertains to cell
immunity (Raivio, 2011).

2.11.3.5 Cas1 and Cas2 are toxin–antitoxin
systems leading to dormancy
The overexpression of the toxin of a toxin–antitoxin (TA) sys-
tem has been observed to induce cell dormancy (see Chapter
2.7), and eventual cell death in the advent of stress. It has also
been hypothesized to assist in survivability of cells, as shown in
E. coli, where the RelE and ChpAK toxins induce a static state of
cell metabolism, allowing for metabolic halt until the antitoxin
is expressed (Pedersen et al., 2002). In a vegetative cell, the toxin
and its associated antitoxin are co-expressed, forming a stable
complex that subdues the activity of the toxin (Van Melderen
and De Bast, 2009; Yamaguchi et al., 2011). In the context of
phage stress, the TA system, mainly the toxin, has been linked to
abortive phage infection, neutralizing both phage and host cell
transcripts, leading to cell suicide and phage elimination (Cook
et al., 2013; Fineran et al., 2009).

Interestingly, Makarova et al. (2012) linked the CRISPR–Cas
system of E. coli immunity to a TA system, specifically address-
ing the role of Cas1 and Cas2 genes as key genes for induc-
ing dormancy and/or abortive phage infection in the event of

bacteriophage infection. They hypothesized that as a cell is
invaded by a phage, cell dormancy is triggered to allow time
for adequate CRISPR–Cas immunity, and/or to induce apopto-
sis to prevent integration and spread of the viral genetic mate-
rial. Their assumption was based on the observation that Cas1
and Cas2 are universal across many CRISPR–Cas systems, and
that Cas2 shares homology to the mRNA-cleaving VapD (Daines
et al., 2004; Kwon et al., 2012), acting as a toxin that induces dor-
mancy and/or death following infection. The antitoxin, Cas1,
forms a complex with Cas2 in the nonstressed cell, and in the
event of bacteriophage infection, Cas2 is presumably degraded,
allowing for Cas1 (toxin) accumulation. However, the link of the
cas genes to this area of stress coping requires more investiga-
tion, and it is highly theoretical (Westra et al., 2014), as a suffi-
cient link between the two systems is yet to be determined. This
is an intriguing association in the realm of stress response and
CRISPR–Cas.

Conclusion

As CRISPR–Cas is in the early stages of investigation, the scope
of functionality has yet to be fully comprehended. As a means to
adaptive immunity (i.e., evolution in progress), the CRISPR–Cas
system has been observed to combat bacteriophage infection, in
addition to other types of foreign genetic material in bacteria.
This is an important function conferring survivorship to tar-
geted bacterial cells, as phages have been observed to cohabit
many ecological niches with bacteria, with the major observable
effect being population decrease due to lysing as part of the bac-
teriophage life cycle (Ashelford et al., 2003; Bergh et al., 1989;
Dı́az-Muñoz and Koskella, 2014; Mojica and Brussaard, 2014;
Proctor and Fuhrman, 1990; Williamson et al., 2013). Alternate
roles of CRISPR–Cas have been investigated, as components of
the CRISPR–Cas pathway appear to be involved in other bacte-
rial stress responses.
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