440 research outputs found

    To incise or not and where: SET-domain methyltransferases know

    Get PDF
    The concept of the histone code posits that histone modifications regulate gene functions once interpreted by epigenetic readers. A well-studied case is trimethylation of lysine 4 of histone H3 (H3K4me3), which is enriched at gene promoters. However, H3K4me3 marks are not needed for the expression of most genes, suggesting extra roles, such as influencing the 3D genome architecture. Here, we highlight an intriguing analogy between the H3K4me3-dependent induction of double-strand breaks in several recombination events and the impact of this same mark on DNA incisions for the repair of bulky lesions. We propose that Su(var)3–9, Enhancer-of-zeste and Trithorax (SET)-domain methyltransferases generate H3K4me3 to guide nucleases into chromatin spaces, the favorable accessibility of which ensures that DNA break intermediates are readily processed, thereby safeguarding genome stability

    Whole Genome Profiling provides a robust framework for physical mapping and sequencing in the highly complex and repetitive wheat genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sequencing projects using a clone-by-clone approach require the availability of a robust physical map. The SNaPshot technology, based on pair-wise comparisons of restriction fragments sizes, has been used recently to build the first physical map of a wheat chromosome and to complete the maize physical map. However, restriction fragments sizes shared randomly between two non-overlapping BACs often lead to chimerical contigs and mis-assembled BACs in such large and repetitive genomes. Whole Genome Profiling (WGP™) was developed recently as a new sequence-based physical mapping technology and has the potential to limit this problem.</p> <p>Results</p> <p>A subset of the wheat 3B chromosome BAC library covering 230 Mb was used to establish a WGP physical map and to compare it to a map obtained with the SNaPshot technology. We first adapted the WGP-based assembly methodology to cope with the complexity of the wheat genome. Then, the results showed that the WGP map covers the same length than the SNaPshot map but with 30% less contigs and, more importantly with 3.5 times less mis-assembled BACs. Finally, we evaluated the benefit of integrating WGP tags in different sequence assemblies obtained after Roche/454 sequencing of BAC pools. We showed that while WGP tag integration improves assemblies performed with unpaired reads and with paired-end reads at low coverage, it does not significantly improve sequence assemblies performed at high coverage (25x) with paired-end reads.</p> <p>Conclusions</p> <p>Our results demonstrate that, with a suitable assembly methodology, WGP builds more robust physical maps than the SNaPshot technology in wheat and that WGP can be adapted to any genome. Moreover, WGP tag integration in sequence assemblies improves low quality assembly. However, to achieve a high quality draft sequence assembly, a sequencing depth of 25x paired-end reads is required, at which point WGP tag integration does not provide additional scaffolding value. Finally, we suggest that WGP tags can support the efficient sequencing of BAC pools by enabling reliable assignment of sequence scaffolds to their BAC of origin, a feature that is of great interest when using BAC pooling strategies to reduce the cost of sequencing large genomes.</p

    Precision digital mapping of endogenous and induced genomic DNA breaks by INDUCE-seq

    Get PDF
    Understanding how breaks form and are repaired in the genome depends on the accurate measurement of the frequency and position of DNA double strand breaks (DSBs). This is crucial for identification of a chemical’s DNA damage potential and for safe development of therapies, including genome editing technologies. Current DSB sequencing methods suffer from high background levels, the inability to accurately measure low frequency endogenous breaks and high sequencing costs. Here we describe INDUCE-seq, which overcomes these problems, detecting simultaneously the presence of low-level endogenous DSBs caused by physiological processes, and higher-level recurrent breaks induced by restriction enzymes or CRISPR-Cas nucleases. INDUCE-seq exploits an innovative NGS flow cell enrichment method, permitting the digital detection of breaks. It can therefore be used to determine the mechanism of DSB repair and to facilitate safe development of therapeutic genome editing. We further discuss how the method can be adapted to detect other genomic features

    Nucleosome remodeling at origins of global genome?nucleotide excision repair occurs at the boundaries of higher-order chromatin structure

    Get PDF
    Repair of UV-induced DNA damage requires chromatin remodeling. How repair is initiated in chromatin remains largely unknown. We recently demonstrated that global genome–nucleotide excision repair (GG-NER) in chromatin is organized into domains in relation to open reading frames. Here, we define these domains, identifying the genomic locations from which repair is initiated. By examining DNA damage–induced changes in the linear structure of nucleosomes at these sites, we demonstrate how chromatin remodeling is initiated during GG-NER. In undamaged cells, we show that the GG-NER complex occupies chromatin, establishing the nucleosome structure at these genomic locations, which we refer to as GG-NER complex binding sites (GCBSs). We demonstrate that these sites are frequently located at genomic boundaries that delineate chromosomally interacting domains (CIDs). These boundaries define domains of higher-order nucleosome–nucleosome interaction. We demonstrate that initiation of GG-NER in chromatin is accompanied by the disruption of dynamic nucleosomes that flank GCBSs by the GG-NER comple

    DNA replication initiation shapes the mutational landscape and expression of the human genome

    Get PDF
    The interplay between active biological processes and DNA repair is central to mutagenesis. Here, we show that the ubiquitous process of replication initiation is mutagenic, leaving a specific mutational footprint at thousands of early and efficient replication origins. The observed mutational pattern is consistent with two distinct mechanisms, reflecting the two-step process of origin activation, triggering the formation of DNA breaks at the center of origins and local error-prone DNA synthesis in their immediate vicinity. We demonstrate that these replication initiation–dependent mutational processes exert an influence on phenotypic diversity in humans that is disproportionate to the origins’ genomic size: By increasing mutational loads at gene promoters and splice junctions, the presence of an origin significantly influences both gene expression and mRNA isoform usage. Last, we show that mutagenesis at origins not only drives the evolution of origin sequences but also contributes to sculpting regulatory domains of the human genome

    Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin.

    Get PDF
    The rates at which lesions are removed by DNA repair can vary widely throughout the genome, with important implications for genomic stability. To study this, we measured the distribution of nucleotide excision repair (NER) rates for UV-induced lesions throughout the budding yeast genome. By plotting these repair rates in relation to genes and their associated flanking sequences, we reveal that, in normal cells, genomic repair rates display a distinctive pattern, suggesting that DNA repair is highly organized within the genome. Furthermore, by comparing genome-wide DNA repair rates in wild-type cells and cells defective in the global genome-NER (GG-NER) subpathway, we establish how this alters the distribution of NER rates throughout the genome. We also examined the genomic locations of GG-NER factor binding to chromatin before and after UV irradiation, revealing that GG-NER is organized and initiated from specific genomic locations. At these sites, chromatin occupancy of the histone acetyl-transferase Gcn5 is controlled by the GG-NER complex, which regulates histone H3 acetylation and chromatin structure, thereby promoting efficient DNA repair of UV-induced lesions. Chromatin remodeling during the GG-NER process is therefore organized into these genomic domains. Importantly, loss of Gcn5 significantly alters the genomic distribution of NER rates; this has implications for the effects of chromatin modifiers on the distribution of mutations that arise throughout the genome.Medical Research Council (Career Establishment Grant), Cancer Research UK (project grant A12340), Cancer Research UK (programme grant C6/A11224), European Research Council, European Community Seventh Framework Programme (grant agreement no. HEALTH-F2- 2010-259893; DDResponse), Cancer Research UK (C6946/A14492), Wellcome Trust (WT092096)This is the author accepted manuscript. The final version is available from Cold Spring Harbor Laboratory Press via http://dx.doi.org/10.1101/gr.209106.11

    The effect of mirabegron on energy expenditure and brown adipose tissue in healthy lean South Asian and Europid men

    Get PDF
    Aim: To compare the effects of cold exposure and the β3-adrenergic receptor agonist mirabegron on plasma lipids, energy expenditure and brown adipose tissue (BAT) activity in South Asians versus Europids. Materials and Methods: Ten lean Dutch South Asian (aged 18-30 years; body mass index [BMI] 18-25 kg/m2 ) and 10 age- and BMI-matched Europid men participated in a randomized, double-blinded, cross-over study consisting of three interventions: short-term (~ 2 hours) cold exposure, mirabegron (200 mg one dose p.o.) and placebo. Before and after each intervention, we performed lipidomic analysis in serum, assessed resting energy expenditure (REE) and skin temperature, and measured BAT fat fraction by magnetic resonance imaging. Results: In both ethnicities, cold exposure increased the levels of several serum lipid species, whereas mirabegron only increased free fatty acids. Cold exposure increased lipid oxidation in both ethnicities, while mirabegron increased lipid oxidation in Europids only. Cold exposure and mirabegron enhanced supraclavicular skin temperature in both ethnicities. Cold exposure decreased BAT fat fraction in both ethnicities. After the combination of data from both ethnicities, mirabegron decreased BAT fat fraction compared with placebo. Conclusions: In South Asians and Europids, cold exposure and mirabegron induced beneficial metabolic effects. When combining both ethnicities, cold exposure and mirabegron increased REE and lipid oxidation, coinciding with a higher supraclavicular skin temperature and lower BAT fat fraction.Diabetes Research Foundation Fellowship 2015.81.1808Netherlands CardioVascular Research Initiative: 'the Dutch Heart Foundation, Dutch Federation of University Medical Centers, the Netherlands Organisation for Health Research and Development and the Royal Netherlands Academy of Sciences' CVON2014-02 ENERGISE CVON2017-20 GENIUS-IIEuropean Union (EU) 602485European Research Council (NOMA-MRI) PCNR is an Established Investigator of the Netherlands Heart Foundation 2009T03

    Glucosylated cholesterol in mammalian cells and tissues: formation and degradation by multiple cellular β-glucosidases.

    Get PDF
    The membrane lipid glucosylceramide (GlcCer) is continuously formed and degraded. Cells express two GlcCer-degrading β-glucosidases, glucocerebrosidase (GBA) and GBA2, located in and outside the lysosome, respectively. Here we demonstrate that through transglucosylation both GBA and GBA2 are able to catalyze in vitro the transfer of glucosyl-moieties from GlcCer to cholesterol, and vice versa. Furthermore, the natural occurrence of 1-O-cholesteryl-β-D-glucopyranoside (GlcChol) in mouse tissues and human plasma is demonstrated using LC-MS/MS and (13)C6-labeled GlcChol as internal standard. In cells, the inhibition of GBA increases GlcChol, whereas inhibition of GBA2 decreases glucosylated sterol. Similarly, in GBA2-deficient mice, GlcChol is reduced. Depletion of GlcCer by inhibition of GlcCer synthase decreases GlcChol in cells and likewise in plasma of inhibitor-treated Gaucher disease patients. In tissues of mice with Niemann-Pick type C disease, a condition characterized by intralysosomal accumulation of cholesterol, marked elevations in GlcChol occur as well. When lysosomal accumulation of cholesterol is induced in cultured cells, GlcChol is formed via lysosomal GBA. This illustrates that reversible transglucosylation reactions are highly dependent on local availability of suitable acceptors. In conclusion, mammalian tissues contain GlcChol formed by transglucosylation through β-glucosidases using GlcCer as donor. Our findings reveal a novel metabolic function for GlcCer.This study was made possible by the ERC AdG CHEMBIOSPHIN. The authors declare no financial conflicts of interest relevant to this study

    Maternal Malaria and Gravidity Interact to Modify Infant Susceptibility to Malaria

    Get PDF
    BACKGROUND: In endemic areas, placental malaria due to Plasmodium falciparum is most frequent and severe in first-time mothers, and increases the risk of infant mortality in their offspring. Placental malaria may increase the susceptibility of infants to malaria parasitemia, but evidence for this effect is inconclusive. METHODS AND FINDINGS: During 2002–2004, we monitored parasitemia in 453 infants, including 69 who were born to mothers with placental malaria, in a region of northeastern Tanzania where malaria transmission is intense. We used a Cox proportional hazards model to evaluate the time from birth to first parasitemia, and a generalized estimating equations logistic regression model to evaluate risk of any parasitemia throughout the first year of life. Compared with infants whose mothers did not have placental malaria at delivery (“PM-negative”), offspring of mothers with placental malaria at delivery (“PM-positive”) were 41% more likely to experience their first parasitemia at a younger age (adjusted hazard ratio [AHR] = 1.41, 95% confidence interval [CI] 1.01–1.99). The odds of parasitemia throughout infancy were strongly modified by the interaction between placental malaria and gravidity (p for interaction = 0.008, Type 3 likelihood ratio test). Offspring of PM-negative primigravidae had lower odds of parasitemia during infancy (adjusted odds ratio [AOR] = 0.67, 95% CI 0.50–0.91) than offspring of PM-negative multigravidae, and offspring of PM-positive primigravidae had the lowest odds (AOR = 0.21, 95% CI 0.09–0.47). In contrast, offspring of PM-positive multigravidae had significantly higher odds of parasitemia (AOR = 1.59, 95% CI 1.16–2.17). CONCLUSION: Although parasitemia is more frequent in primigravid than multigravid women, the converse is true in their offspring, especially in offspring of PM-positive women. While placental malaria is known to increase mortality risk for first-born infants, it surprisingly reduced their risk of parasitemia in this study. Placental malaria of multigravidae, on the other hand, is a strong risk factor for parasitemia during infancy, and therefore preventive antimalarial chemotherapy administered to multigravid women close to term may reduce the frequency of parasitemia in their offspring

    Malaria in pregnant women in an area with sustained high coverage of insecticide-treated bed nets

    Get PDF
    BACKGROUND\ud \ud Since 2000, the World Health Organization has recommended a package of interventions to prevent malaria during pregnancy and its sequelae that includes the promotion of insecticide-treated bed nets (ITNs), intermittent preventive treatment in pregnancy (IPTp), and effective case management of malarial illness. It is recommended that pregnant women in malaria-endemic areas receive at least two doses of sulphadoxine-pyrimethamine in the second and third trimesters of pregnancy. This study assessed the prevalence of placental malaria at delivery in women during 1st or 2nd pregnancy, who did not receive intermittent preventive treatment for malaria (IPTp) in a malaria-endemic area with high bed net coverage.\ud \ud METHODS\ud \ud A hospital-based cross-sectional study was done in Ifakara, Tanzania, where bed net coverage is high. Primi- and secundigravid women, who presented to the labour ward and who reported not using IPTp were included in the study. Self-report data were collected by questionnaire; whereas neonatal birth weight and placenta parasitaemia were measured directly at the time of delivery.\ud \ud RESULTS\ud \ud Overall, 413 pregnant women were enrolled of which 91% reported to have slept under a bed net at home the previous night, 43% reported history of fever and 62% were primigravid. Malaria parasites were detected in 8% of the placenta samples; the geometric mean (95%CI) placental parasite density was 3,457 (1,060-11,271) parasites/mul in primigravid women and 2,178 (881-5,383) parasites/mul in secundigravid women. Fifteen percent of newborns weighed <2,500 g at delivery. Self-reported bed net use was statistically associated with lower risk for low birth weight [OR 0.34 (95% CI: 0.16-0.74) and OR 0.22 (95% CI: 0.08-0.59) for untreated and treated bed nets, respectively], but was not associated with placental parasitaemia [OR 0.74 (0.21-2.68) and OR 1.64 (0.44-6.19) for untreated and treated bed nets, respectively].\ud \ud CONCLUSION\ud \ud The observed incidence of LBW and prevalence of placental parasitaemia at delivery suggests that malaria remains a problem in pregnancy in this area with high bed net coverage when eligible women do not receive IPTp. Delivery of IPTp should be emphasized at all levels of implementation to achieve maximum community coverage
    corecore