1,118 research outputs found

    Past electron-positron g-2 experiments yielded sharpest bound on CPT violation for point particles

    Full text link
    In our past experiments on a single electron and positron we measured the cyclotron and spin-cyclotron difference frequencies omega_c and omega_a and the ratios a = omega_a/ omega_c at omega_c = 141 Ghz for e^- and e^+ and later, only for e^-, also at 164 Ghz. Here, we do extract from these data, as had not done before, a new and very different figure of merit for violation of CPT symmetry, one similar to the widely recognized impressive limit |m_Kaon - m_Antikaon|/m_Kaon < 10^-18 for the K-mesons composed of two quarks. That expression may be seen as comparing experimental relativistic masses of particle states before and after the C, P, T operations had transformed particle into antiparticle. Such a similar figure of merit for a non-composite and quite different lepton, found by us from our Delta a = a^- - a^+ data, was even smaller, h_bar |omega_a^- - omega_a^+|/2m_0 c^2 = |Delta a| h_bar omega_c/2m_0 c^2) < 3(12) 10^-22.Comment: Improved content, Editorially approved for publication in PRL, LATEX file, 5 pages, no figures, 16

    Breaking CPT by mixed non-commutativity

    Get PDF
    The mixed component of the non-commutative parameter \theta_{\mu M}, where \mu = 0,1,2,3 and M is an extra dimensional index may violate four-dimensional CPT invariance. We calculate one and two-loop induced couplings of \theta_{\mu 5} with the four-dimensional axial vector current and with the CPT odd dim=6 operators starting from five-dimensional Yukawa and U(1) theories. The resulting bounds from clock comparison experiments place a stringent constraint on \theta_{\mu 5}, |\theta_{\mu 5}|^{-1/2} > 5\times 10^{11} GeV. The orbifold projection and/or localization of fermions on a 3-brane lead to CPT-conserving physics, in which case the constraints on \theta{\mu 5} are softened.Comment: 4 pages, latex, 1 figur

    Direct high-precision measurement of the magnetic moment of the proton

    Full text link
    The spin-magnetic moment of the proton μp\mu_p is a fundamental property of this particle. So far μp\mu_p has only been measured indirectly, analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here, we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin-transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the proton's cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particle's magnetic moment in units of the nuclear magneton μp=2.792847350(9)μN\mu_p=2.792847350(9)\mu_N. This measurement outperforms previous Penning trap measurements in terms of precision by a factor of about 760. It improves the precision of the forty year old indirect measurement, in which significant theoretical bound state corrections were required to obtain μp\mu_p, by a factor of 3. By application of this method to the antiproton magnetic moment μpˉ\mu_{\bar{p}} the fractional precision of the recently reported value can be improved by a factor of at least 1000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons.Comment: published in Natur

    Modelling CO emission from Mira's wind

    Full text link
    We have modelled the circumstellar envelope of {\it o} Ceti (Mira) using new observational constraints. These are obtained from photospheric light scattered in near-IR vibrational-rotational lines of circumstellar CO molecules at 4.6 micron: absolute fluxes, the radial dependence of the scattered intensity, and two line ratios. Further observational constraints are provided by ISO observations of far-IR emission lines from highly excited rotational states of the ground vibrational state of CO, and radio observations of lines from rotational levels of low excitation of CO. A code based on the Monte-Carlo technique is used to model the circumstellar line emission. We find that it is possible to model the radio and ISO fluxes, as well as the highly asymmetric radio-line profiles, reasonably well with a spherically symmetric and smooth stellar wind model. However, it is not possible to reproduce the observed NIR line fluxes consistently with a `standard model' of the stellar wind. This is probably due to incorrectly specified conditions of the inner regions of the wind model, since the stellar flux needs to be larger than what is obtained from the standard model at the point of scattering, i.e., the intermediate regions at approximately 100-400 stellar radii (2"-7") away from the star. Thus, the optical depth in the vibrational-rotational lines from the star to the point of scattering has to be decreased. This can be accomplished in several ways. For instance, the gas close to the star (within approximately 2") could be in such a form that light is able to pass through, either due to the medium being clumpy or by the matter being in radial structures (which, further out, developes into more smooth or shell-like structures).Comment: 18 pages, 3 figures, accepted for publication in Ap

    A new photon recoil experiment: towards a determination of the fine structure constant

    Get PDF
    We report on progress towards a measurement of the fine structure constant to an accuracy of 5×10105\times 10^{-10} or better by measuring the ratio of the Planck constant to the mass of the cesium atom. Compared to similar experiments, ours is improved in three significant ways: (i) simultaneous conjugate interferometers, (ii) multi-photon Bragg diffraction between same internal states, and (iii) an about 1000 fold reduction of laser phase noise to -138 dBc/Hz. Combining that with a new method to simultaneously stabilize the phases of four frequencies, we achieve 0.2 mrad effective phase noise at the location of the atoms. In addition, we use active stabilization to suppress systematic effects due to beam misalignment.Comment: 12 pages, 9 figure

    Mira's wind explored in scattering infrared CO lines

    Get PDF
    We have observed the intermediate regions of the circumstellar envelope of Mira (o Ceti) in photospheric light scattered by three vibration-rotation transitions of the fundamental band of CO, from low-excited rotational levels of the ground vibrational state, at an angular distance of beta = 2"-7" away from the star. The data were obtained with the Phoenix spectrometer mounted on the 4 m Mayall telescope at Kitt Peak. The spatial resolution is approximately 0.5" and seeing limited. Our observations provide absolute fluxes, leading to an independent new estimate of the mass-loss rate of approximately 3e-7 Msun/yr, as derived from a simple analytic wind model. We find that the scattered intensity from the wind of Mira for 2" < beta < 7" decreases as beta^-3, which suggests a time constant mass-loss rate, when averaged over 100 years, over the past 1200 years.Comment: accepted for publication in the Astrophysical Journa

    Quantum Logic with a Single Trapped Electron

    Get PDF
    We propose the use of a trapped electron to implement quantum logic operations. The fundamental controlled-NOT gate is shown to be feasible. The two quantum bits are stored in the internal and external (motional) degrees of freedom.Comment: 7 Pages, REVTeX, No Figures, To appear in Phys. Rev.

    Electron-radiation interaction in a Penning trap: beyond the dipole approximation

    Full text link
    We investigate the physics of a single trapped electron interacting with a radiation field without the dipole approximation. This gives new physical insights in the so-called geonium theory.Comment: 12 pages, RevTeX, 6 figures, Approved for publication in Phys. Rev.

    Fundamental Physical Constants: Looking from Different Angles

    Full text link
    We consider fundamental physical constants which are among a few of the most important pieces of information we have learned about Nature after its intensive centuries-long studies. We discuss their multifunctional role in modern physics including problems related to the art of measurement, natural and practical units, origin of the constants, their possible calculability and variability etc
    corecore