3,580 research outputs found

    Cultureel erfgoed en het vestigingsgedrag van huishoudens

    Get PDF

    Traveling waves in a finite condensation rate model for steam injection

    Get PDF
    Steam drive recovery of oil is an economical way of producing oil even in times of low oil prices and is used worldwide. This paper focuses on the one-dimensional setting, where steam is injected into a core initially containing oil and connate water while oil and water are produced at the other end. A three-phase (oil, water, steam) hot zone develops, which is abruptly separated from the two-phase (oil + water) cold zone by the steam condensation front. The oil, water and energy balance equations (Rankine–Hugoniot conditions) cannot uniquely solve the system of equations at the steam condensation front. In a previous study, we showed that two additional constraints follow from an analysis of the traveling wave equation representing the shock; however, within the shock, we assumed local thermodynamic equilibrium. Here we extend the previous study and include finite condensation rates; using that appropriate scaling requires that the Peclet number and the Damkohler number are of the same order of magnitude. We give a numerical proof, using a color-coding technique, that, given the capillary diffusion behavior and the rate equation, a unique solution can be obtained. It is proven analytically that the solution for large condensation rates tends to the solution obtained assuming local thermodynamic equilibrium. Computations with realistic values to describe the viscous and capillary effects show that the condensation rate can have a significant effect on the global saturation profile, e.g. the oil saturation just upstream of the steam condensation front

    Uniqueness conditions in a hyperbolic model for oil recovery by steamdrive

    Get PDF
    In this paper we study a one-dimensional model for oil recovery by steamdrive. This model consists of two parts: a (global) interface model and a (local) steam condensation/capillary diffusion model. In the interface model a steam condensation front (SCF) is present as an internal boundary between the hot steam zone (containing water, oil and steam) and the cold liquid zone (containing only water and oil). Disregarding capillary pressure away from the SCF, a 2x2 hyperbolic system arises for the water and steam saturation. This system cannot be solved uniquely without additional conditions at the SCF. To find such conditions we make a blow up of the SCF and consider a parabolic transition model, including capillary diffusion. We study in detail the existence conditions for travelling wave solutions. These conditions translate into the missing matching conditions at the SCF in the hyperbolic limit and thus provide uniqueness. We show that different transition models yield different matching conditions, and thus different solutions of the interface model. We also give a relatively straightforward approximation and investigate its validity for certain ranges of model parameters

    Steam injection into water-saturated porous rock

    Full text link

    Steam injection into water-saturated porous rock

    Get PDF
    We formulate conservation laws governing steam injection in a linear porous medium containing water. Heat losses to the outside are neglected. We find a complete and systematic description of all solutions of the Riemann problem for the injection of a mixture of steam and water into a water-saturated porous medium. For ambient pressure, there are three kinds of solutions, depending on injection and reservoir conditions. We show that the solution is unique for each initial data
    • …
    corecore