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ABSTRACT 

We formulate conservation laws governing steam injection in a linear porous medium containing water. Heat 
losses to the outside are neglected. We find a complete and systematic description of all solutions of the 
Riemann problem for the injection of a mixture of steam and water into a water-saturated porous medium. For 
ambient pressure, there are three kinds of solutions, depending on injection and reservoir conditions. We show 
that the solution is unique for each initial data.  

Mathematical subject classification: 76S05, 35L60, 35L67.  

Key words: porous medium, steamflood, travelling waves, multiphase flow.  

  

  

Introduction  

Steam injection is an effective technique to restore groundwater aquifers contaminated with non-aqueous phase 
liquids (NAPL's) such as hydrocarbon fuels and halogenated hydrocarbons [15]. It is also one of the most 
effective methods to recover oil from medium to heavy oil reservoirs [13]. The main feature of steam injection 
is the steam condensation front (SCF), which marks the boundary between the upstream zone at boiling 
temperature and the downstream liquid zone below the boiling temperature. Depending on the situation there 
may exist an isothermal steam-water shock at the boiling temperature (HISW) instead of the SCF. The main 
result of this work is a complete and systematic classification of the structure of all possible cases of Riemann 
solutions. As a first step we have ignored the presence of NAPL's in our model. The model has also applications 
outside the use of steam for oil recovery or pollutant product recovery, for example in chemical engineering.  
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There is an extensive literature on models of steam drive. Their main focus is the internal structure of the steam 
condensation front and they are reviewed in [4], [5].  

In this article we limit ourselves to the simple case of steam displacing water. Our aim is to investigate a unique 
well posed solution of the Riemann problem for all possible values of the model parameters, providing 
mathematical validation of our model. This is the first step towards solving the full problem of groundwater 
NAPL removal.  

In Section 1, the physical model is presented. It is described mathematically by balance equations of mass and 
thermal energy, which are rewritten into a form suitable for analysis.  

Section 2 presents the basic waves arising in the model; the main concern is to identify their speeds, so as to be 
able to find the order in which they may appear in a linear steam injection experiment. In Section 3, we see that 
for certain values of initial and boundary data, some of these speeds coincide, giving rise to bifurcation and 
structural change in the Riemann solution. All solutions of the Riemann problem are in Section 4. Section 5 
verifies that the SCF satisfies Lax's shock inequalities, but not strictly. Section 6 summarizes our results and 
conclusions.  

Appendix A describes notation and values for the physical quantities appearing in the model.  

  

1 Physical and mathematical model  

1.1 Physical model  

We consider linear steam displacement in a homogeneous reservoir of constant permeability and porosity. The 
reservoir is initially saturated with water. The pressure gradients pw/x, pg/ x driving the fluids are small with 

respect to the prevailing system pressure p divided by the length of the reservoir. In particular, within the short 
steam condensation zone pressure variations are negligible. Hence we disregard the effect of pressure variation 
on the density of the fluids and on their thermodynamic properties. The reservoir is horizontal, so gravitational 
effects vanish.  

A steam-water mixture is injected at constant rate uinj and constant steam/water injection ratio. Transverse 
heat losses are disregarded. We neglect capillary forces after steam breakthrough at the production end of the 
reservoir to avoid problems with the capillary end effect, which is outside the present scope of our interest.  

The effects of temperature on the fluid properties, e.g. water viscosity w, steam viscosity g, water density w 

and steam density g are taken into account. Darcy's Law determines the fluid motion. The temperature 

dependence of heat capacities and of the evaporation heat are also taken into account. Capillary pressure as 
well as an effective longitudinal heat conduction term are included.  

We have chosen to describe condensation in terms of a steam mass condensation rate equation. The mass 
condensation rate q is always positive when the temperature drops below the boiling temperature Tb as long as 
not all steam has condensed, that is Sw < 1.  

The stated conditions can be considered representative of steam injection in the subsurface for remediation of 
contaminated sites. As steam is injected the reservoir is heated. Depending on the proportions of steam and 
water in the injected mixture, we can distinguish three regimes, which differ in the structure of Riemann 
solutions. When pure steam is injected, there will be a decrease of the steam saturation in the hot zone away 
from the injection point, described as a rarefaction wave, and then a SCF to the cold water, described as a 
shock with a concentrated source term. This is called situation I. As the water injection rate is increased further 
a zone in which the steam saturation is constant will develop preceding the rarefaction wave until the steam 
saturation in the hot zone is constant. After this constant state there is a SCF and a cold water region. This will 
be called situation II. Finally when the water-steam injection ratio is increased further, the steam bank will not 
be fast enough to reach the cooling front separating the hot and cold water zones; thus there is no SCF. This 
and higher ratios originate in situation III. In all regimes, there is a hot zone and a cool zone, whose boundary 
moves with constant speed, as shown in Fig. 1.  
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Each of the enthalpies per unit volume Hw(T), Hr(T), Hg(T) ([J/m3]) is defined with respect to the enthalpy at 

the initial reservoir temperature T0 at the standard state. This means that they are all zero at the initial 
temperature T0. The enthalpy of steam is subdivided in a sensible part (T) and a latent part (T0), i.e. Hg

(T) = (T) + (T0). The sensible heat (T0) is zero at the initial reservoir temperature. The evaporation 

heat or the latent heat per unit mass at the initial reservoir temperature T0 is denoted by  

 

In general (T) is the evaporation heat per unit mass at temperature T. The enthalpies as a function of 
temperature are summarized in Appendix A for convenience.  

We assume Darcy's law for two-phase flow, water and steam respectively, without gravity terms:  

 

The liquid water viscosity and the steam viscosity are temperature-dependent functions (see Appendix A).  

As discussed in [4], the water mass source term is taken as  

 

This term is motivated by the idea that the condensation rate is determined by a ''driving force'' which is 
proportional to its departure from equilibrium Sw = 1 and T = Tb ( see also reference [11]). The value of qb is 

considered very large.  

1.2 The model equations  

The mass balance equation of liquid water and steam read as follows: 

 

The rock porosity  is assumed to be constant. We include longitudinal heat conduction, but neglect heat losses 
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to the surrounding rock, in the energy balance equation given below. By our assumption of almost constant 
pressure we ignore adiabatic compression and decompression effects. Thus the energy balance is (See reference 
[2], Table 10.4-1):  

 

Here  is the composite conductivity of the rock-fluid system [1]:  

 

Equations (4), (5), and (6) are the basic governing equations for the flow.  

Equations (4) and (5) are combined with the heat balance equation (6), where we also use separation in 
sensible and latent quantities, to obtain:  

 

Using Eq. (5), this yields  

 

Let us define the fractional flow functions for water and steam:  

 

The capillary pressure 

 

which is given by Equation (83), is a strictly monotone decreasing function; it appears in the definition of the 
capillary diffusion coefficient :  

 

We notice that  vanishes precisely at water saturations Sw = Swc and Sw = 1. 
 

Using Darcy's law (2) (in the absence of gravitational effects) and the definition of Pc given in Eq. 10, one can 

easily show from Eqs. (2) and (11) that:  
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where  

 

is the total or Darcy velocity and  acts as a saturation-dependent capillary diffusion coefficient.  

Substituting (12) into Equations (4), (5) and (8) leads to 

 

The governing system of equations is (14)-(16).  

As to initial conditions, we assume that the reservoir is filled with water at saturation Sw(x, t = 0) =  = 1 

with constant temperature T(x, t = 0) = T0. As to boundary conditions, the total injection rate uinj is specified 
and constant (see Appendix A). The constant steam-water injection ratio is specified in terms of the water 

saturation  at the injection side.  

Lemma 1. In a region where the temperature is constant (and noncritical), q = 0.  

Proof. If the temperature is constant, the enthalpies are constant, so Eq. (8) becomes  

 

We regroup Eq. (17) and use the mass balance equations (4) and (5). Since the temperature is constant the 
densities are constant too, so Eq. (17) becomes  

 

The term in parenthesis in Eq. (18) is minus the enthalpy per unit mass required to convert water into steam 
and is therefore non-zero. Consequently we must have that q = 0. Summarizing, we can say that if the 
temperature is constant in space and time then there is no source term. 

Remark 1. It is easy to see that the source term q vanishes in regions where either (i) the temperature is 
constant, (ii) the gas saturation is zero, (iii) the water saturation is zero.  

  

2 The hyperbolic framework  

By ignoring capillary pressure and heat conduction diffusive effects, we are in the framework of first order 
hyperbolic conservation laws; this framework is useful to study the basic waves of the model. Throughout this 
section we assume that all fluids are in thermodynamic equilibrium. Equations (14) and (15), the mass balance 
equation of liquid water and steam combined with Darcy's law read as follows:  
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When we add these equations, we obtain the total water conservation:  

 

Eq. (16) becomes  

 

or equivalently, as in Eq. (6)  

 

Eqs. (21) and (22) will be used for most of the analysis in this section.  

Remark 2. Notice that all speeds defined by Equations (21) and (22) are proportional to u. Thus we can choose 
any speed to parameterize all the other ones.  

Let us consider all regions where the mass transfer term vanishes. The mass transfer can vanish because of 
several reasons. Based on these reasons, we classify the regions in the following table. Because the mass 
source term vanishes (Eq. (3)), we have the following zones in the reservoir:  

  

 

  

We call ''hot steam-water region'', or ''hot region'', the hot steam zone together with hot water zone, where T = 
Tb. We call ''liquid water region'' the hot water zone together with the cold water zone.  

These regions overlap on the hot water zone.  

Remark 3. There is no ''cold steam zone'' in Table 1 because at thermodynamical equilibrium steam cannot 
exist at a temperature lower than Tb.  

As we will see, a configuration composed by sequential zones of hot steam, hot water and cold water is possible, 
counting away from the injection point. At the first interface Sw = 1 is reached, while at the second one T = T0 

is reached.  

A configuration containing only the hot steam zone and the cold water zone is possible if we interpose the so 
called SCF, where both saturation and temperature change abruptly.  

Lemma 2. The source term in the hot region and in the liquid water region is zero. That the source term is zero 
in the hot region follows from Remark 1. That the source term is zero in the liquid region follows from the 
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existence of a single phase and consequent absence of mass and energy transfer between phases.  

2.1 The hot region  

This region starts with the hot steam zone, where steam is injected at boiling temperature Tb. We claim that the 
Darcy velocity u (given by Eq. (13)) in the hot region is independent of position. To prove this fact we use 
equations (19), (20). As the temperature is Tb, the source term (such as given in Eq. (3)) vanishes and the 
densities are constant. We can divide Eqs. (19), (20) by the densities and add the resulting equations and 
obtain our claim.  

Since the Darcy velocity u is a constant in space in the hot region and since in this work we also take that uinj is 
constant in time, the temperature Tb and the Darcy velocity ub are constant in this region. Thus Eq. (22) is 
satisfied trivially, and both Eqs. (19) and (20) reduce to any of the two equivalent forms of the Buckley-Leverett 
problem for steam and water that follows: 

 

This equation governs propagation in the hot steam zone, as long as steam and water are both present. The 
classical Ole nik construction [10], or equivalently, the fractional flow theory [12] describe waves in this zone.  

We will denote by  the speed of propagation of saturation waves in the hot steam zone. It is obtained from 

Eq. (24) as the characteristic speed:  

 

where T = Tb and we use the nomenclature (Sw) = fw(Sw, Tb). 

 

A particular Buckley-Leverett shock for (24) turns out to play a relevant role, separating a mixture of steam and 
water from pure water, both at boiling temperature. We call it the hot isothermal steam-water shock or HISW 
shock between the (–) state ( , Tb, ub) containing steam and the (+) state (1, Tb, ub) containing water at 

boiling temperature. It has speed  given by  

 

Notice that, because fg(Sg = 0) = 0 and (fg/Sg)(Sg = 0) = 0 from Eq. (9) and from the quadratic behavior of 

the steam relative permeabilities in the saturation given in Eq. (82), with ng = 2 we obtain:  

 

Similarly, for  < Swc from Eqs. (82) and (9),
 

 

Remark 4. It is easy to verify that  in Eq. (25) is monotonously increasing in  when  is less than Sinfl, 

the inflection abscissa of fw, and monotonously decreasing when  is larger than Sinfl.  

2.2 Liquid water region  

We recall that the liquid water zone consists of the hot region, which is also part of the hot region examined in 
Section 2.1, and of the cold water zone.  
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In the liquid water zone there is no steam, so there is no mass transfer between steam and water. So q = 0. 
Also, in the liquid region Sw = 1, so Eqs. (21) and (22) reduce to 

 

2.2.1 Cooling contact discontinuity  

We will assume that w and  are essentially constant in the pressure and temperature region of interest. A 

more complete discussion can be found in [5].  

Let us consider a temperature discontinuity from Tb to T0, with speed  in the liquid water between the hot 

left (or upstream) state (Sw = 1, T = Tb, ub) and the cold right (or downstream) state (Sw = 1, T = T0, u0). For 

such a cooling contact discontinuity, from Eqs. (29) and (30) one can obtain the following Rankine-Hugoniot 
relation, where we denote by ub and u0 the Darcy velocities at the discontinuity sides corresponding to Tb and 
T0:  

 

where  

 

We recall that our convention is that enthalpies vanish at T0; then the Rankine-Hugoniot condition can be 
rewritten as  

 

From the second equality in Eq. (33), we obtain that  

 

which expresses the conservation of water mass.  

From the last term in Eq. (33) and from Eq. (34):  

 

Remark 5. Notice that the dependence of w on temperature is often small. If w were independent of 

temperature (constant), then Eq. (34) would imply that ub = u0.  

Remark 6. Since all speeds in this problem scale with u, and uinj is constant in time, u0 and ub are constant in 
time.  

Remark 7. In the hot water zone, both Sw = 1 and T = Tb, so q = 0. Since the temperature is constant, so is 

w, thus Eq. (29) says that u is a constant, which has already been called ub in Section 2.1. Equation (30) says 
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that the characteristic speed (of temperature waves) in the hot water zone is  

 

This is the propagation speed of small temperature perturbations near T = Tb in the hot water zone. 

 

Remark 8. Under the assumptions that w and  are constant in pressure and temperature, the characteristic 

speeds (36) evaluated at Tb, and evaluated at T0 coincide with the discontinuity speed (31). In gas dynamics, 
discontinuities with this coincidence property are called contact discontinuities. Hence the name we gave to this 
wave.  

2.3 Steam condensation front  

This is a discontinuity joining a state (–) containing steam and water at temperature Tb to pure water at 
temperature T0, a state (+); that is, it separates the hot steam zone from the cold water zone. It satisfies the 
following Rankine-Hugoniot conditions with speed vSCF for Eqs. (21), (23) between states ( , Tb, ub) and (  

= 1, T0, u0). From the water balance (21) we obtain:  

 

and from the energy balance (23) we obtain:  

 

As no steam exists on the right of the SCF, we can say that  =  = 1 and  =  = 0 and thus Eq. (37) 

becomes  

 

Under the same conditions we obtain for the heat balance equation (38):  

 

The RHS term of Eq. (40) vanishes in the absence of steam because of our convention for enthalpies, as far as 
rock and water are concerned. For the SCF velocity it follows from Eqs. (39), (40) that 

 

where we used the nomenclature that follows from Eq. (1):  
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Because  = 1 – ,  = 1 –  and  depends only on the water saturation in the constant temperature 

steam zone, we observe that u0 depends only on the water saturation and the Darcy velocity at the left of the 
SCF as well as on the velocity of the SCF.  

From Eqs. (41) and (42), we can write u0 in terms of ub: 

 

 

Eqs. (42) and (44) represent the speeds vSCF and u0 in terms of ub. Eq. (44) easily allows to read ub in terms of 
u0 (see Figure 2). We can use the expression of  given by Eq. (44) in Eq. (42) to obtain vSCF in terms of u0: 

 

  

 

  

Finally, we replace  in Eq. (45) by its definition given in Eq. (43).  

Remark 9. In principle, (+) states with temperature T different from T0 could be considered, but because  

was assumed to be constant such condensation discontinuities do not appear in the Riemann solution.  

2.4 Cold water zone  

In the cold water zone, Sw = 1, so q = 0. Since T = T0 is constant, so is w. Thus Eq. (29) says that u is a 

constant that has been called u0. Equation (30) says that the characteristic speed (of temperature waves) in the 
cold water zone is  
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3 Wave bifurcation analysis  

Let us consider the situation where the hot steam zone is followed by a cold water zone. For such a situation to 
occur, there must be a steam condensation discontinuity in between. Let us first examine the critical case (*) 
when the speed of the condensation discontinuity is the same as the characteristic speed in the cold water zone. 

3.1 The hot-cold bifurcation  

Because speed equality of different waves typically represents resonance and generates bifurcations, let us 
consider the case when the SCF speed is so large that it equals the cooling contact discontinuity speed. We 
expect this bifurcation to represent the boundary between configurations containing either SCF shocks or cooling 
discontinuities. Equating the cooling discontinuity speed  (from Eq. (33) or equivalently from (35)) with vSCF 

given by Eq. (45). Using Eq. (26), we conclude that we have the following remarkable speed equalities.  

Theorem 1. Fix T0 and Tb (or equivalently T0 and the reservoir pressure). Consider the following three shocks: 
HISW shock between ( , Tb, ub), (1, Tb, ub), cooling shock between (1, Tb, ub), (1, T0, u0), SCF between ( , 

Tb, ub), ( ,T0,u0), with speeds ,  and vSCF respectively. If any two of their wave speeds coincide at a 

certain  = S*, then their three speeds coincide at this S*.  

Proof. The proof consists of three parts. The velocities are given in Eqs. (26), (35) and (42).  

(1) Assume that at  = S* we have  = . 
 

From the equality in speeds, Eqs. (26) and Eqs. (33) we have for  = 1 – S*: 
 

 

Multiplying numerator and denominator of the second fraction in Eq. (47) by  and subtracting the results to 

the corresponding terms in the third fraction, we obtain:  

 

Multiplying numerator and denominator of the first fraction in Eq. (48) by  and adding the results to the 

corresponding terms in the second equation, we obtain:  

 

From Eqs. (26) and (42), we see that  = vSCF. 

 

(2) Performing the above calculation in reverse order, we can prove that  = vSCF implies  = 

vSCF = .  

(3) Assume that at S* we have  = vSCF. 

 

From Eqs. (35) and (42), and assuming that  = , i.e. the density of water is independent of temperature,  
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Substituting  = 1 – ,  = 1 –  in the numerator and denominator of the last fraction in Eq. (50) we 

obtain:  

 

Subtracting the numerator and denominator of the first fraction from the corresponding terms in the last 
fraction we obtain:  

 

or, from Eq. (26),  = , and the proof is complete.  

The speed  is the Buckley-Leverett speed of propagation of a hot steam shock from  to Sw = 1 (pure hot 

water, or no steam) governed by Eq. (24). Thus, each pair of states of this one-parameter family of 
discontinuities (S*, T

b, ub), (1, T0, u0) acts as an organizing center in the space of all solutions of the Riemann 

problem; the first member (S*, T
b, ub) of each such pair is denoted by *. This family of discontinuities is 

parameterized by u0 for instance, as explained in Remark 2.  

Theorem 1 provides information related to the structure at the left of the temperature discontinuities. In Figure 
3, S* corresponds to the saturation of a state *. See also Figure 4. The * state separates two different 

configurations; in one of them, there is a hot steam zone and a cold water zone separated by a SCF, while in the 
other there is a hot steam zone, a hot water zone and a cold water zone.  
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3.2 The steam-water bifurcation  

Let us fix T0 and Tb (or equivalently T0 and the reservoir pressure). Let us now examine the critical case () when 
the speed of the steam condensation discontinuity is so high that it becomes the same as the characteristic 
speed of saturation waves in the hot region given in Eq. (25), so the SCF overtakes the cooling discontinuity. 
One can expect that the SCF cannot exist with higher speed. At Sf, the SCF becomes a left-contact. At such a 

state (S, T, u) = (S, Tb, ub), we have:  

 

It is easy to find numerically or graphically (see Fig. 5) the solution of Eq. (53) using Eq. (42) and solve for S. 
Notice that ub cancels out. Subsequently we can use Equation (44) to calculate the downstream velocity u0 in 
terms of vSCF. Equivalently, we can use Eqs. (44), (45) to obtain ub and vSCF in terms of u0.  
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Remark 10. If Figure 5 were drawn to scale for the actual data nothing would be visible. The drawing is for 
illustrative purposes. In the numerical example studied in detail, we find the following values: S = –1.32449, f = 
–0.00471, Sinfl = 0.884747, S = 0.308042, S = 0.991435, and S* = 0.983167.  

Equating vSCF given by Eq. (53) with Eq. (42), making  = 1 – , Sg = 1 – Sw, we obtain 

 

 

where  

 

and all quantities are evaluated at the boiling temperature Tb. The physics of water at normal pressure dictates 

that at the boiling temperature,  < , thus S < 0 and  

 

Remark 11. Since for steam-water (S, T) satisfies the inequalities (56), there is another solution point (S, ) 

for Eq. (53) closer to (1,1) as shown in Fig. 5. However, it does not play any role in the Riemann solution of the 
current problem because it exceeds S*, according to Remark 10.  

The contact bifurcation S separates different wave structures in the steam-water zone as can be seen in Fig. 6.  

  

 

  

In Figures 11 and 2, we show the characteristic speed vSCF and ub for each , at temperature Tb for fixed u0. 

As we shall see in Section 4.2, the diagram in Fig. 11 determines the structure of the Riemann solution in the 
steam zone.  
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Remark 12. By inspection of Figure 5, we see that slightly above S there exist S+ and slightly below S there 

exist S–, such that in the limit as S+ = S– we have vSCF(S+) = vSCF(S–) larger than vSCF(S), satisfying as well  

 

Subtracting these two equations, dividing by (S+ – S–) and taking the limit as S+, S–  S we recover that 
 

 

and obtain that S maximizes vSCF, as illustrated in Figures 3, 6 and 11. An analogous argument holds at S. 

 

Remark 13. The SCF shocks are represented in Figure 5 as segments with slope (vSCF/ub) between (S, f) and 
(S, f) for 0 < S < S. We see that as S increases vSCF decreases and the shock amplitude S-S increases.  

Remark 14. We have shown that (vSCF/ub) has an extremum at S; the Figure 5 shows that this slope has an 

extremum at S. Thus (vSCF/ub) also has an extremum at S.  

3.3 Waves in the liquid water region  

Because the initial reservoir temperature is T0, the liquid water region must always contain a cold water zone at 
temperature T0 far away from the place where hot steam is injected. If the liquid water region receives water at 
temperature Tb from the steam zone, the liquid water region consists of a hot liquid water zone at temperature 
Tb and a cold water zone at temperature T0, separated by a cooling discontinuity that moves with speed  

given by Eq. (35). This cooling discontinuity exists provided  >  from Eq. (26) i.e. the hot isothermal 

steam-water shock velocity (HISW). In this case the HISW shock at which the steam saturation becomes zero 
and the cooling shock where the temperature jumps to the ambient temperature are separated. See region S > 
S* in Fig. 3.  
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On the other hand, if  >  were to be violated, there would be no hot water zone and no cooling 

discontinuity. See region S < S* in Fig. 3, where there is a steam condensation front instead of a cooling 

discontinuity.  

3.4 Waves in the hot steam zone  

The waves in this zone can be found by a pure Buckley-Leverett or Olenik analysis of Eq. (24), with one caveat. 
In the sequence of zones starting at the injection well, the first zone is a steam zone, and the last one is a cold 
water zone, with heat flow governed by the system (29)-(30). The cold water zone is reached either via a steam 
condensation shock or via a cooling shock. In the latter case, if there is no other shock between the steam zone 
and the cold water zone, all waves in the steam zone must have speeds that do not exceed the cooling shock 

speed  given by Eq. (34). In particular, if there is a HISW shock with speed given by  in Eq. (26), we 

must have  < . Similarly, if there is a saturation rarefaction wave with speed given by  in Eq. (25), 

we must have  < , the cooling contact discontinuity velocity.  

Because of Theorem 1, we see that the restrictions above are satisfied precisely for saturation  in the hot 
water zone with values between [S*, 1], see Figure 11. For steam-water at the conditions considered in this 

work, one can verify that the steam water bifurcation water saturation S is smaller than S* in Fig. 5. Because S 

< S*, there are no Buckley-Leverett shocks between [Swc, S*]. This is so because below S there are no shocks 

as rarefaction wave velocities increase monotonically from Swc to S. At S the velocity is equal to the SCF 

velocity. Between S and S* there are no shocks as the rarefaction wave velocities are larger than the SCF 

velocity.  

Another case of interest occurs if pure steam is injected, i.e. Sw = Swc, the connate water saturation. In this 

case, a saturation rarefaction wave starts at x = 0 in the steam zone. A mixture of steam and water can also be 

injected. As long as  < S, at x = 0 there is a constant state followed by a saturation rarefaction wave. Of 

course, in the Buckley-Leverett solution for the steam zone the rarefaction wave containing a saturation value 
Sw satisfies the geometric compatibility condition:  

 

  

4 Construction of the Riemann solution  

Here we describe a systematic way of constructing the Riemann solution through a wave curve. Then we 
summarize the resulting Riemann solution.  

4.1 The wave curve  

Let us fix the initial state of the reservoir as  = 1, T = T0, u = u0, which is necessarily the rightmost constant 

state in the Riemann solution. It turns out to be convenient for the discussion to imagine that an arbitrary value 
for u0 has been specified. Let us decrease the injection saturation  (at the boiling temperature) from Sw = 1 

to Sw = Swc; in our case this corresponds to changing , the water saturation at the HISW shock with speed 

given in Eq. (26). For each , we construct the sequence of elementary waves (and constant states) with 

decreasing speeds from right to left, that is from  to . There is a constant state to the left of , so there 

is no other wave to the left of , the steam shock. For each , we mark its wave speed, forming the solid 

curves in Fig. 11. This sequence, parameterized by , is called a backward wave curve from (Sw = 1, T0, u0). 

It combines all information needed for describing the structure of the Riemann solution, and for verifying 
necessary speed relations for the admissibility of the shocks involved. On rarefaction segments of this backward 
wave curve, the characteristic speed decreases, while on shock segments of this wave curve, the shock speed 
increases [8], [14]. We refer to Fig. 11.  

When  lies between S* and 1, the wave with fastest possible speed is the cooling shock in the liquid water 

region (see Section 3.4), so the backward wave curve corresponds to such a shock wave, with speed given by 

 in Eq. (35). There is a hot steam-water region and a cold water zone. In the hot steam-water region, 
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generically there is a Buckley-Leverett rarefaction-shock and a constant state. The hot steam-water region 
terminates with the HISW shock.  

The analysis from now on relies on the fact that for steam-water in the actual reservoir, Sinfl < S*. For  

within (S, S*) , the wave with slowest speed is the SCF, with speed vSCF. At the left of the SCF, characteristic 

speed  exceeds vSCF, so there can be no rarefactions nor shocks to the left of the SCF. Thus, for  in such 

range, the solution (from left to right) consists of a constant state of steam and water at temperature Tb, a SCF 

jumping from  to 1.0, and a constant cold water zone.  

Recall that S < Sinfl. Therefore, from  within (Swc, S), the slowest speed is a hot steam-water rarefaction 

speed , which is smaller than vSCF (  and vSCF coincide at the left state S), so there are rarefactions to the 

left of the SCF. Thus the solution consists of a constant state with saturation  as in the previous case (this 

constant state disappears if  = Swc), a rarefaction wave from  to S, a SCF from S to 1, and a constant 

cold water zone.  

Let us explain how the Darcy velocity ub is constructed for each value of . If  lies in the interval (S*, 1), 

ub is given by Eq. (34), and the speed  of the cooling shock is given by Eq. (35) (Case III). (As explained in 

Section 2.1, the velocity u is constant in the hot region and equals ub.) If  lies in the interval S and S*, u
b is 

given by Eq. (44). The speed of the SCF is given by Eq. (45), (Case II).  

If  lies in the interval (Swc, S) (Case I, since ub has to match at the boundary of Cases I and II, ub is given 

by Eq. (45) with Sw replaced by S. Thus ub is independent of  in Case I.  

A summary of the behavior of ub( ) is presented in Fig. 2. Here ub( ) is the value of ub calculated in the 

previous paragraphs for a fixed u0.  

We are ready to abandon the assumption that u0 is known. This is impractical, since normally one specifies uinj 
rather than u0. We take advantage of the fact that all speeds are proportional to find the actual speed in the 
cold water zone u0( ) for specified uinj, as follows:  

 

From this equation we recover u0( ), essentially by inverting the variable represented in the ordinate in Fig. 

2. Thus we obtain Fig. 7.  

4.2 Summary of the Riemann solution  

The solution consists of three parts, viz. a hot region (A) at constant boiling temperature, an infinitesimally thin 
cooling front (B) or discontinuity, where all possible steam condensation occurs, and a cold liquid water region 
downstream (C). See Figure 1.  

As we have seen, the nature of the solution changes and there are three possible cases (I), (II), and (III), 

depending on the injected steam quality  = 1 – . Cases (II) and (III) are separated by the hot-cold 

bifurcation, while Cases (I) and (II) are separated by the steam-water bifurcation.  

Case (I) occurs when the saturation wave velocity ( ; uinj) < vSCF (see Eq. (25)); it consists of a sequence 

of a constant state at the injection end, a rarefaction wave in the hot steam zone (A) ending with saturation S at 
the SCF (B) with speed vSCF defined by saturations S and Sw = 1, and a cold water constant state in (C). The 

constant state in (A) disappears if the injection saturation is Swc, that is, pure steam is injected. See Fig. 8. The 

rarefaction disappears for  ( ; uinj) = vSCF, as in this case  = S.  

Case (II) occurs for  ( , uinj) < vSCF <  ( ; uinj); see Eqs. (25), (26) and (27). This case consists of 

a hot constant steam-water state in (A), the SCF (B) with speed vSCF defined by left and right saturations  

and 1 (see Eq. (45)), and a constant cold water state in (C). See Fig. 9.  
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Case (III) occurs for a typically small region for the cooling contact discontinuity velocity  (given in Eq. (35)) 

with  >  ( , uinj) (see Eq. (26)), i.e. the hot isothermal steam-water shock velocity. In this case, 

there is no SCF. In the hot region (A) there is a constant state with steam-water, then another constant state of 
pure hot water at the same boiling temperature, separated by a Buckley-Leverett shock. Then there is a cooling 
shock with speed , where the saturation of water is constant (Sw = 1) and the temperature changes from Tb 

to the reservoir temperature T0. (See Fig. 10.)  

Figure 6 illustrates the saturation dependence of the various velocities that are the basis of the steam-water 
zone structure, for Cases (I), (II), (III).  

  

5 Lax conditions for the steam condensation front  

Despite the fact that our system does not satisfy Lax's theorem hypotheses, we will compare the SCF speed to 
the left and right characteristic speeds. We will conclude that from the point of view of Lax's inequalities, the 
SCF is a 2-shock or a limit of such shocks.  

We introduce the heat capacities Cp(T) as the temperature derivatives of the enthalpies [J/m3] at constant 

pressure, i.e. (T) is the heat capacity of water and (T) is the heat capacity of steam. In the same way we 
define the thermal expansivity of water and steam w(T) and g(T) as minus the temperature derivative of the 

density divided by the density (see Appendix A).  

Eqs. (21)-(22) may be written in quasilinear form as:  

 

We restrict our attention to regions where u/x = 0 and q = 0, that is, away from any kind of shocks. Thus, the 
LHS terms of Eqs. (62), (63) vanish.  

We let  

 

Multiplying the RHS of Eq. (62) by -(Hw - ) and of Eq. (63) by (w – g) and adding leads to a new equation, 

which will be used instead of Eq. (63):  
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We let  

 

Thus in regions where u/x = 0 and q = 0, that is, away from any kind of shocks (see Remarks 1 and 2), Eqs. 
(62)-(65) may be written in matrix form as:  

 

Let  be a characteristic speed. Then the determinant of the following matrix must vanish:  

 

Since the matrix above is upper triangular, the characteristic speeds are easily read from the diagonals:  

 

(It is easy to check that AIII never vanishes.) 
 

Now, in the liquid water region on the right of the SCF, Sg = 0, fg = 0,  = 0, the characteristic speeds are 
 

 

The latter speed has already been calculated in Eq. (46).  

On the other hand, in the hot steam zone the characteristic speeds are  

 

The first speed has already been calculated in Eq. (45). The second speed of thermal waves is shown in Figure 
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11 as a function of Sw at T = Tb.  

For a (-) state for the SCF with Sw in (S*, Sf) we have that the thermal characteristic speed in the steam zone 

satisfies 0 < v0 < vSCF, and the steamfront velocity satisfies  < vSCF < , so the SCF would be called a 2-

shock in Lax's classification scheme. However, Lax's theorem only applies to shocks with small amplitude, while 
the SCF is a large shock, and only if the governing equations were a system of conservation laws satisfying 
appropriate technical hypotheses, such as genuine nonlinearity, which is actually violated at the inflection Sinfl. 
Moreover, even the Lax inequalities are violated starting at the steam-water bifurcation; there is no conclusive 
mathematical evidence that the SCF shock needed to complete the Riemann solution is physically admissible. 
This is the issue left open.  

  

6 Summary and conclusions  

A complete and systematic description of all possible solutions of the Riemann problem for the injection of a 
mixture of steam and water into a water-saturated porous medium, for all possible reservoir temperatures and 
pressures below the water critical point. For each Riemann data, we found a unique solution.  

As determined by the dissipative effects of capillary porous forces combined with the mass source term given in 
Eq. 3, the internal structure of the SCF is consistent with the Riemann solution in this work. This fact is 
demonstrated in a companion paper [4].  
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Appendix A - Physical quantities; symbols and values  

In this Appendix we summarize the values and units of the various quantities used in the computation and 
empirical expressions for the various parameter functions. For convenience we express the heat capacity of the 
rock  in terms of energy per unit volume of porous medium per unit temperature i.e. the factor 1 –  is 
already included in the rock density. All other densities are expressed in terms of mass per unit volume of the 
phase.  
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A.1 Temperature dependent properties of steam and water  

We use reference [16] to obtain all the temperature dependent properties below. The water and steam densities 
used to obtain the enthalpies are defined at the bottom. First we obtain the boiling point Tb at the given 
pressure p, i.e.  

 

where  = log(p) and p is the pressure in [k Pa]. The evaporation heat [J/kg] is given as a function of the 
temperature T at which the evaporation occurs. We use atmospheric pressure (p = 101.325 [k Pa]) in our 
computations, to make the example representative of subsurface contaminant cleaning.  

The liquid water enthalpy hw(T) [J/kg] as a function of temperature is approximated by 
 

 

The steam enthalpy hg [J/kg] as a function of temperature is approximated by 
 

 

For the latent heat  [J/kg] or evaporation heat (T) we obtain  

 

The sensible heat of steam (T) in [J/m3] is given as 

 

 

We also use the temperature dependent steam viscosity  

 

The temperature dependent water viscosity w is approximated by
 

 

For the steam density tion of temperature T[K] we use a different expression than [16] because our interest is a 
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steam density at constant pressure, which is not necessarily in equilibrium with liquid water.  

 

where p is the total pressure at which the steam displacement is carried out, R=8.31 [J/mol K] and Z is the Z-
factor (see e.g. Dake [6]) and  = 0.018 kg/mole is the molar weight of water. For the atmospheric 
pressures of interest here the Z-factor is close to unity. The liquid water density as a function of the 
temperature T[K] is given as  

 

A.2 Constitutive relations  

We use a porosity  that is representative for unconsolidated sand. The relative permeability functions krw and 

krg are considered to be power functions of their respective effective saturations [7], i.e.  

Swe = (Sw – Swc)/(1 – Swc), Sge = Sg /(1 – Swc). 
 

The effective saturations require knowing the connate water saturation Swc. In all our examples we use a fourth 

power of the effective saturation for the relative water permeability and a quadratic dependence for the steam 
relative permeability.  

The relative permeability functions krw and krg are considered to be power functions of their respective 

saturations [7], i.e.  

 

For the computations we take nw = 4, ng = 2. The connate water saturation Swc is given in the table. 
 

The capillary pressure is of the Brooks-Corey type based on the dimensionless capillary pressure from Pc(Sw = 

0.5)/(wg ) = 0.5. The capillary pressure between steam and water is given by the empirical expression 

which combines Leverett's approach to non-dimensionalize the capillary pressure [9] with the semi-empirically 
determined saturation dependence suggested by Brooks [3]:  

 

where  is a parameter that in many cases assumes values between 0.3 and 0.7. We use  = 0.5 and s = . 

Finally wg = 0.058 is the water-vapor interfacial tension. We disregard its temperature dependence and use the 

value at the boiling point (see [17], p. F-45).  
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