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TRAVELING WAVES IN A FINITE CONDENSATION RATE MODEL
FOR STEAM INJECTION

J. BRUINING AND C.J. VAN DUIJN

Abstract. Steam drive recovery of oil is an economical way of producing oil even in times
of low oil prices and is used world wide. This paper focuses on the one-dimensional setting,
where steam is injected into a core initially containing oil and connate water while oil and
water are produced at the other end. A three phase (oil, water, steam) hot zone develops,
which is abruptly separated from the two phase (oil+water) cold zone by the steam conden-
sation front. The oil, water and energy balance equations (Rankine-Hugoniot conditions)
cannot uniquely solve the system of equations at the steam condensation front. In a previ-
ous study we showed that two additional constraints follow from an analysis of the traveling
wave equation representing the shock, however within the shock we assumed local thermo-
dynamic equilibrium. Here we extend the previous study and include finite condensation
rates, using that appropriate scaling requires that the Peclet number and the Damkohler
number are of the same order of magnitude. We give a numerical proof, using a color coding
technique, that given the capillary diffusion behavior and the rate equation a unique solu-
tion can obtained. It is proven analytically that the solution for large condensation rates
tends to the solution obtained assuming local thermodynamic equilibrium. Computations
with realistic values to describe the viscous and capillary effects show that the condensation
rate can have a significant effect on the global saturation profile e.g. the oil saturation just
upstream of the steam condensation front.

1. Introduction

Steam injection, as a method for enhanced oil recovery, received considerable attention in
the petroleum engineering literature during past decades ( [11], [16], [32]). Recently there is
renewed interest for the purpose of removing oil spills from the subsurface ([3], [19], [20], [23],
[37], [38]). The processes involved are extremely complex and pose challenging questions
concerning theory ([12], [26], [45], [46]) experiment ([13], [24], [43]) and numerical modeling
( [1], [5], [8], [11], [29], [30], [31]).
The theoretical study described in this paper builds on previous work ([7], [39]). In [7]

we considered a simplified model describing oil recovery by steam drive. The proposed
model assumes small capillary forces and instantaneous condensation as a result of thermo-
dynamic equilibrium. It has an upstream hot three-phase (oil, water, steam) flow zone and
a downstream cold two-phase (oil, water) flow zone. The upstream and downstream zones
are separated by a relatively thin transition region, which is described by a (local) steam
condensation/capillary diffusion model based on the ideas of Udell et al. ([28], [40], [42]). In
the limit of zero capillary forces the transition region collapses to form a steam condensation
front (SCF). Disregarding capillary pressure away from the condensation front, a 2x2 hyper-
bolic system ( [14], [15]) arises for water and steam. This system cannot be solved uniquely
without additional conditions at the SCF. To find these conditions we studied traveling waves

Date: DRAFT - bruining/duijn-RATE: May 11, 2005.
Corresponding author: j.bruining@ta.tudelft.nl.

1



2 J. BRUINING AND C.J. VAN DUIJN

of the capillary model in the transition region ([21], [22], [25], [27]). In [7], we investigated
the effect of different capillary pressure behavior, the effect of gradual versus abrupt temper-
ature decline from the steam temperature to ambient temperature and the effect of non-zero
gas saturation at the SCF. In all these cases we assumed local thermodynamic equilibrium.
We found and made explicit that details of the transition model affect the global behavior of
the steam displacement process. It is therefore of interest to investigate whether the global
behavior also depends on the rate constant i.e. if we drop the assumption of thermodynamic
equilibrium and implement a condensation rate model. A finite reaction rate model is also
preferred in numerical simulations. We expect that in the limit of large rate constants the
results for local equilibrium are retrieved. The aim of this paper is to investigate those two
aspects.
In Section 2 we briefly describe the model and recall the model equations. The hyperbolic

setting and a summary of previous results is given in Section 3. In Section 4 we define the
traveling wave problem and the method to obtain the unique solution for a given condensation
model. The route to thermodynamic equilibrium is explained in Section 5 by sending the
rate constant to infinity. We end in Section 6 with computations for some realistic cases and
comparison to previous results.

2. Finite rate condensation model

2.1. Physical considerations. Oil displacement by steam drive through a porous medium
is a complex physical process which is controlled by the steam condensation process and
by viscous and capillary forces, see for instance Stewart & Udell [40] and Wingard & Orr
[44]. Following ideas of Shutler [39], we proposed in [7] a one-dimensional model where
all complexity is confined to a small transition region in which the condensation occurs and
capillary forces act. The model describes the case of injecting steam in a linear core originally
filled with oil and connate water. The porosity ϕ and permeability k are constant.We allow
for temperature dependent liquid viscosities except that we assume the steam viscosity to be
independent of temperature, because these viscosities are small anyway and the temperature
dependence of µg˜T 0.6 is much smaller than for the liquid viscosities.
The core is horizontal and we disregard the effects of gravity. Transverse capillary pressure

diffusion is sufficiently large to guarantee a uniform saturation over the cross-section. The
core is positioned along the positive x-axis with flow from left to right, implying that all
variables are functions of position x, and time t. The displacement is considered to occur at
constant pressure, in the sense that we disregard flow induced pressure gradient effects on
the thermodynamic properties, reaction rates, fluid densities and viscosities. Therefore the
pressure does not explicitly enter in the model equations but it determines the value of some
parameters. The temperature dependence of the parameters is summarized in the table.
The oil considered is dead oil: i.e. it does not occur in the gas phase. Dissolution of liquid
oil in water and vice versa is disregarded. The condensation occurs between an upstream
three-phase flow zone at steam temperature Tb where oil, water and steam are present and
a downstream two-phase flow zone at the initial reservoir temperature To where water and
oil are present. In the upstream and downstream regions capillary forces are disregarded.
Consequently these regions are adequately described by an (extended) Buckley-Leverett
approach. We use powerlaw relative permeabilities (both quadratic and fourth powers), as
well as Stone I expressions [9].
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Table: Summary of physical input parameters 1

Physical quantity symbol value unit
characteristic length L 100 [m]
steam temperature Tb 486 [K]
reservoir temperature To 313 [K]
injection rate steam uinj 9.52 10−4 [m3/m2/s]
steam viscosity µg 1.63 10−5 [Pa s]
oil viscosity at Tb µo(Tb) 2.45 10−3 [Pa s]
oil viscosity at To µo(To) 0.180 [Pa s]
water viscosity at Tb µw(Tb) 1.30 10−4 [Pa s]
water viscosity at To µw(To) 7.21 10−4 [Pa s]
reference viscosity µ∗w 5.0 10−4 [Pa s]
Brooks-Corey sorting factor λs 2 [-]
Rate constant qb 103 [s−1]
enthalpy H2O(l)(To)→ H2O(g)(T1) ∆H 2636 [kJ/kg]
effective heat capacity of rock (ρc)r 2029 [kJ/m3/K]
thermal coefficient α 0.017 [-]
capillary diffusion constant D 1.85× 10−7 [m2/s]
diffusion correciton factor d 10−2 [-]
velocity SCF vst 7.12× 10−5 [m/s]
porosity ϕ 0.38 [m3/m3]
permeability k 1.0× 10−12 [m2]
interfacial tension σ 0.03 [N/m]
water density ρw 1000 [kg/m3]
steam density ρg 10.2 [kg/m3]
connate water saturation Swc 0.15 [m3/m3]
residual gas saturation Sgr 0.0 [m3/m3]
residual oil saturation Sor 0.0 [m3/m3]

All condensation occurs in a thin region called the steam condensation front (SCF). The
constant travel speed of the SCF is determined from an energy balance that is decoupled
from the mass balance equations. The decoupling is achieved by disregarding the effect of
fluid content on the heat capacity (ρc)r of the porous medium. The velocity vst is determined
from a local heat balance, in which the heat released by the condensing steam impinging on
the SCF is equal to the amount of heat necessary to warm up the reservoir, see Mandl and
Volek [26]. The result is

vst =
ρg∆H uinj

(ρc)r(Tb − To)
.

The symbols appearing in this expression are explained in the table.
Within the transition region there is an interplay between viscous forces, capillary forces,

and the condensation process. In this paper we use a finite rate condensation model. There
are three dimensionless numbers involved in the processes that occur in the transition zone

1The values of the steam parameters in the table assume a steam pressure of 20 bar. Furthermore the
value of the thermal coefficient α is based on a thermal diffusivity of 9.85 10−7 [m2 /s]. Note that this
coefficient is proportional to the ratio of the capillary and thermal diffusivity.
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i.e. the Peclet number for mass transport Pe, the Peclet number for heat transport PeT and
the Damkohler number Da. These numbers indicate respectively the ratio of phase transport
by convection and diffusion, the ratio of heat convection and thermal conductivity and the
ratio of the rate of convected phase transport and the condensation rate. In the model we
assume an instantaneous temperature drop from steam temperature to reservoir temperature
as the steam saturation becomes zero. Furthermore we assume that the Damkolhler number
Da and the Peclet number Pe are of the same order of magnitude. We compare our results
to those obtained in [7], where it was assumed that all steam condenses at a single point in
the transition region, the actual (SCF). The rate of condensation is sufficiently fast so that
indeed all condensation occurs in a small neighborhood of the steam condensation front.
Here "small" must be understood in a suitable dimensionless context. In the condensation
zone the temperature drops from steam temperature Tb to the original reservoir temperature
To and steam condenses at a rate proportional to (Tb − T ) , where T is the prevailing tem-
perature. As long as there is steam, the condensation rate is proportional to the saturation
Sg. When the steam saturation is zero, the pores are fully saturated with water and oil,
and the condensation rate becomes zero. This leads to the following expression for the mass
condensation rate q

q =

(
ρgqb

Tb−T
Tb−ToSg for T ≤ Tb , 0 < Sg ≤ 1− Swc,

0 otherwise ,
(2.1)

where qb is the condensation rate parameter. As in [7] we assume that the temperature
distribution can be determined independently from the condensation process. In fact, in [7]
we distinguished between an exponential decline and a step wise decline. In this paper we
confine ourselves to the step-wise decline. Hence the temperature is discontinuous and given
by

T =

½
Tb x < vstt,
To x ≥ vstt.

The phase densities ρα (α = w, o, g) are assumed to be constant throughout this paper.

2.2. Model equations. The mass balance equations for water, steam and oil read

ϕ
∂(ρwSw)

∂t
+

∂(ρwuw)

∂x
= q, (2.2)

ϕ
∂(ρgSg)

∂t
+

∂(ρgug)

∂x
= −q, (2.3)

ϕ
∂(ρoSo)

∂t
+

∂(ρouo)

∂x
= 0. (2.4)

where q is given by expression (2.1). The phase saturations satisfy

0 ≤ Swc ≤ Sw ≤ 1, 0 ≤ Sg, So ≤ 1− Swc, (2.5)

in other words we assume there is no residual oil and gas in the system. We use Darcy’s law
for multi-phase flow to express all phase velocities uα in terms of the total velocity u and
the capillary pressures, see [1] and also ([10], [18], [33], [34]). This gives
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uw = ufw + λofw
∂pc,ow
∂x

+ λgfw
∂pc,gw
∂x

, (2.6)

ug = ufg − λofg
∂pc,go
∂x

− λwfg
∂pc,gw
∂x

, (2.7)

uo = ufo − λwfo
∂pc,ow
∂x

+ λgfo
∂pc,go
∂x

. (2.8)

Here
u = uw + uo + ug, (2.9)

pc,αβ the capillary pressure, being the pressure difference between phase α and phase β, and
fα the fractional flow function

fα =
λα

λo + λw + λg
. (2.10)

Further λα denotes the mobility of phase α, given by

λα =
kkra
µα

,

were krα is the relative permeability (fourth powers of the effective saturations) and µα the
phase viscosity. Since water and oil experience different temperatures, their viscosities may
vary significantly across the steam condensation front. Realistic values ([4], [35], [41]) are
given in the table. In later sections we use the notation f±a , where f

−
α denotes the fractional

flow function in the hot steam zone and f+α in the cold oil zone.
Since X

α

Sα =
X
α

fα = 1 and u =
X
α

uα,

we can eliminate, for instance, So from the equations. Further summing equations (2.6),
(2.7) and (2.8) and using equation (2.9), we find

∂u

∂x
= − 1

ρg

µ
1− ρg

ρw

¶
q = −qb

µ
1− ρg

ρw

¶µ
Tb − T

Tb − To

¶
Sg. (2.11)

Thus our primary variables are u, Sw and Sg for which we have equations (2.11), (2.2+2.6)
and (2.3+2.7). Injecting only steam from the left at x = 0 and having only oil and connate
water present at t = 0, requires the boundary/initial conditions:

u (0, t) = uinj, Sw (0, t) = Swc , and Sg (0, t) = 1− Swc, (2.12)

for all t > 0 and

Sw (x, 0) = Swc and Sg (x, 0) = 0, (2.13)

for all x > 0. In (2.12), uinj denotes the injection velocity of the steam.
We want to write the Darcy velocities uw and ug in terms of capillary diffusion involving

Sw and Sg only. For this purpose we note that

pc,gw = pg − pw = pc,go + pc,ow,
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where pc,ow = pc,ow (Sw) is a strictly decreasing function of the water saturation and where
pc,go = pc,ow (1− Sg) is a strictly increasing function of the gas saturation. For instance in
[7] we considered the Brooks-Corey expression, see also ([2], [6], [36]),

pc,ow =
σ

2

r
ϕ

k

µ 1
2
− Swc

1− Swc

¶1/λs µ
Sw − Swc
1− Swc

¶−1/λs
, (2.14)

where λs > 0 is the sorting factor.
Using these observations we obtain

uw = ufw −Dww
∂Sw
∂x
−Dwg

∂Sg
∂x

, (2.15)

ug = ufg −Dgw
∂Sw
∂x
−Dgg

∂Sg
∂x

, (2.16)

where

Dww = − (λo + λg) fw
dpc,ow
dSw

> 0,

Dwg = −λgfwdpc,go
dSg

< 0,

Dgw = λwfg
dpc,ow
dSw

< 0,

Dgg = (λo + λw) fg
dpc,go
dSg

> 0. (2.17)

Except in Section 6, where we work out a realistic case based on expression (2.14), we
consider throughout this paper

Dww = Dgg = D = constant,
Dwg = Dgw = 0,

where the constant diffusivity is given by

D = σ
√
ϕk

µ∗w
d.

Here µ∗w denotes a characteristic water viscosity e.g. µw (To) and d accounts for the effect of
the water relative permeability and the functional relation of the capillary pressure.

2.3. Rescaled equations. We rewrite the equations in dimensionless form by setting

Sw :=
Sw−Swc
1−Swc , So :=

So
1−Swc , Sg :=

Sg
1−Swc , (2.18)

T := T−To
Tb−To , u := u

uinj
, x := x

L
, t :=

uinjt

ϕL
, (2.19)

where L represents a characteristic length of the problem, for instance the distance between
injection and production point. Introducing the reciprocal Peclet number ε := D/ (uinjL)
and the dimensionless rate constant r := qbD/u2inj we find
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∂u

∂x
= −r

ε
(1− α) (1− T )Sg, (2.20)

∂Sw
∂t

+
∂ufw
∂x

= α
r

ε
(1− T )Sg + ε

∂2Sw
∂x2

, (2.21)

∂Sg
∂t

+
∂ufg
∂x

= −r
ε
(1− T )Sg + ε

∂2Sg
∂x2

. (2.22)

Here α = ρg/ρw. Generally α << 1. The boundary and initial conditions follow from (2.12)
and (2.13). They read

u (0, t) = 1, Sw (0, t) = 0 , Sg (0, t) = 1 for all t > 0 (2.23)

and
Sw (x, 0) = Sg (x, 0) = 0 for all x > 0. (2.24)

The scaled temperature T = T (x, t) is discontinuous at the SCF with

T =

½
1 x < vt,
0 x ≥ vt,

(2.25)

where v = vst/uinj .

Remark 2.1. Direct scaling of equation (2.11) gives

∂u

∂x
= − qbL

uinj
(1− α) (1− T )Sg

with qbL
uinj

being the dimensionless rate parameter (Damkohler number). To balance terms in
the equations, in particular after the additional blow up x := x/ε, we need

qbL

uinj
=

r

ε
, with r = O (1) as ε ↓ 0.

Realistic numbers from the table give:

qbL

uinj
∼ 108, r ∼ 102 and ε ∼ 10−6.

3. Hyperbolic setting and previous results

When the scale L of the problem is such that D << uinjL, and thus ε << 1, one expects
that equations (2.20)-(2.22) reduce to a hyperbolic system, similar to the one studied in [7],
in which all steam condenses at the steam condensation front: i.e.

∂u

∂x
= − (1− α)Λδ(x− vt), (3.1)

∂Sw
∂t

+
∂ufw
∂x

= αΛδ(x− vt) , (3.2)

∂Sg
∂t

+
∂ufg
∂x

= −Λδ(x− vt) . (3.3)



8 J. BRUINING AND C.J. VAN DUIJN

Figure 3.1. Water and gas saturations in hyperbolic model ((3.1)-(3.3)). In
(a): saturations in the (x, t) plane with unknowns

¡
S−w , S

−
g , S

+
w , u

+
¢
at the

steam condensation front. In (b) the saturation path in the (Sw, Sg) plane.

Here Λ is the condensation rate that originates from the condensation terms in equations
(2.20)-(2.22) and δ the Dirac measure at x = vt. Below we make this precise for traveling
wave solutions.
In [7] we showed that a solution of the system (3.1)-(3.3), satisfying (2.23) and (2.24) can

only be a fast rarefaction with u = 1 in the steam region {x < vt } , with a shock at the
steam condensation front {x = vt } , and with two-phase Buckley-Leverett behavior in the
cold region {x > vt } where Sg = 0, .see Figure 3.1
We also showed that in order to obtain a uniquely constructed solution, a local transition

model at the steam condensation front must be introduced. In the hyperbolic setting there
are 4 unknowns at the steam condensation front: the water and gas saturation

¡
S−w , S

−
g

¢
on the left, and the water saturation S+w and Darcy velocity u+ on the right. Counting the
number of equations between them we have from mass conservation two Rankine-Hugoniot
conditions

(RH)

½
f−w − vS−w + αΛ = u+f+w − vS+w ,

f−g − vS−g − Λ = 0,
(3.4)

with Λ = (1− u+) / (1− α) . A third equation follows from the condition that the fast
rarefaction has to match up with the velocity of the steam condensation front. This gives
the entropy condition

(E) λ2
¡
S−w , S

−
g

¢
= v, (3.5)

where λ2 denotes the largest eigenvalue at
¡
S−w , S

−
g

¢
of the Jacobian matrix of the satura-

tion flux (fw, fg) . The missing-fourth-relation follows from a traveling wave analysis of the
transition model. In fact, the existence condition for a traveling wave, giving the shock its
viscous profile, enabled us to construct a unique shock solution. We considered several local
transition models, all having instantaneous condensation, and investigated their influence on
the global solution through the shock condition at the steam condensation front.

The main purpose of this paper is to understand the finite rate condensation model pro-
posed in Section 2. We do this by analyzing traveling wave solutions of equations (2.20)-
(2.22). Such solutions allow us to quantify the role of the rate parameter r and can be used
as a building block in the construction of a unique shock solution.
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In the finite rate condensation model the rate constant is r/ε, where r = O (1) and ε is
small. This is chosen to balance terms in the equations. To see this we set

η =
x− vt

ε
(3.6)

and consider the waves

Si = Si (η) (i = w, g) and u = u (η) . (3.7)

Because of (2.25) we have T = 1−H (η) , where H denotes the Heaviside function

H (η) =

½
0 η < 0
1 η > 0

Substitution of (3.6) and (3.7) into (2.20)-(2.22) results in the system of ordinary differential
equations

u0 = − (1− α) r (1− T )Sg,
−vS 0w + (ufw)0 = αr (1− T )Sg + S00w,
−vS0g + (ufg)0 = −r (1− T )Sg + S00g,

⎫⎬⎭ (3.8)

where the primes denote differentiation with respect to η. Note that ε has disappeared from
the formulation and that the domain of the equations, for ε ↓ 0, ranges from η → −∞ to
η → +∞. As in [7] we impose the boundary conditions

(BC)

½
Sw (−∞) = S−w , Sg (−∞) = S−g , u (−∞) = 1
Sw (∞) = S+w , Sg (∞) = S+g , u (∞) = u+,

that satisfy (RH) , with Λ appropriately chosen, and (E) .
Suppose, for the moment, that a traveling wave exists and that the decay of Sg (η) → 0

as η →∞ is such that
∞Z
0

Sg (η) dη <∞ (3.9)

and

lim
ε↓0
1

ε
Sg

µ
δ

ε

¶
= 0 for every δ > 0. (3.10)

Clearly, for i = w, g,

Sε
i (x, t) = Si

µ
x− vt

ε

¶
and uε (x, t) = u

µ
x− vt

ε

¶
are solutions of equations (2.20)-(2.22). In these equations the condensation terms satisfy
for any t > 0

r

ε

Z
R

(1− T (x, t))Sε
g (x, t) dx =

r

ε

∞Z
vt

Sε
g (x, t) dx = r

∞Z
0

Sg (η) dη

for all ε > 0, and

lim
ε↓0

r

ε
(1− T (x, t))Sε

g (x, t) = 0 for all x 6= vt.

Hence
lim
ε↓0

r

ε
(1− T (x, t))Sε

g (x, t) = Λδ (x− vt) ,
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where

Λ = Λ (r) := r

∞Z
0

Sg (η) dη. (3.11)

Remark 3.1. Conditions (3.9) and (3.10) follow directly from the construction of a solution.
In Section 4 we show that in the (u, Sw, Sg)-space the boundary point (u+, S+w , 0) is a saddle
with two positive and one negative eigenvalue. The latter provides exponential decay from
which (3.9) and (3.10) directly follow.

In the saturation equations from (3.8) we substitute

r (1− T )Sg = − 1

(1− α)
u0.

Integrating the resulting expressions gives

(TW )

⎧⎨⎩
u0 = − (1− α) r (1− T )Sg,
S 0w = ufw − vSw +

α
1−αu−

¡
f−w − vS−w +

α
1−α
¢
,

S 0g = ufg − vSg − 1
1−αu−

¡
f−g − vS−g − 1

1−α
¢
,

with −∞ < η <∞ .
We analyze this dynamical system in the next section. To emphasize the construction and

to avoid technical details, we consider the rather academic case in which the viscosities do
not depend on temperature and in which the viscosity ratio’s are unity. Taking in addition
quadratic relative permeabilities, the fractional flow functions simplify to

fi = fi (Sw, Sg) =
S2i

S2w + S2g + (1− Sw − Sg)
2 (3.12)

and
f±i = fi

¡
S±w , S

±
g

¢
. (3.13)

The results for a realistic case, with temperature dependent viscosities, a large viscosity
contrast, and different relative permeabilities, will be presented and discussed in Section 6.

4. Construction of shocks by means of traveling waves

In this section we explain the construction of a unique solution satisfying the simplified
dynamic system (TW ) , with fractional flow functions given by (3.12) and (3.13), subject to
boundary conditions (BC) satisfying the constraints of Rankine Hugoniot (RH) and entropy
(E) . The construction uses a shooting argument in the three-dimensional (u, Sw, Sg)-space.
Since

Sw + Sg = 1− So ≤ 1 and u0 ≤ 0,
we expect that a solution is confined to the domain

R = £u+, 1¤×T
where T denotes the saturation triangle

T = {(Sw, Sg) : Sw, Sg ≥ 0 and Sw + Sg ≤ 1 }
As in [7], the solution of the hyperbolic system (3.1)-(3.3), satisfying boundary and initial

conditions (2.23 and 2.24), respectively, follows a path as AE in R. This is sketched in
Figure 4.1. Here A denotes the boundary condition (1, 0, 1) . The part AB reflects the fast
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Figure 4.1. Orbit in (u, Sw, Sg) space

rarefaction in the steam region where T = 1 and thus u = 1. The point B =
¡
1, S−w , S

−
g

¢ ∈ l,
where

l = {(u, Sw, Sg) : u = 1 and λ2 (Sw, Sg) = v}
Thus for points in l, the speed of the fast rarefaction and the steam condensation front
coincide. With respect to the two-dimensional triangle {u = 1} × T, the point B is a
non-hyperbolic saddle with eigenvalues (at

¡
S−w , S

−
g

¢
of the Jacobian matrix of the vector

(fw − vSw, fg − vSg))
e1 < e2 = λ2 − v = 0.

The part BCD reflects the traveling wave as the viscous profile of the shock from B to
D = (u+, S+w , 0) . Since T (η) = 1 for η < 0, the part of the traveling wave with −∞ < η < 0
has u = 1 and is therefore confined to the face triangle {u = 1} ×T. At C the temperature
drops from boiling point to reservoir temperature implying that T (η) = 0 for η > 0. The
path or orbit representing the solution now moves into the domainR with strictly decreasing
u. At D all steam has condensed. A two-phase Buckley-Leverett finally connects D to the
initial condition E = (u+, 0, 0) , with only movable oil being present.
The aim is now to show that for given α ∈ (0, 1) and v, r > 0, being the only parameters

in the simplified problem, there exists a unique solution of (TW ) which flows from B ∈ l as
η → −∞, through C at η = 0, to D as η → ∞. In this solution, B and D are related by
conditions (RH) .

We first consider the construction for η < 0. Since u (η) = 1 for all η < 0, we drop u from
the notation. With reference to Figure 4.2, let Smaxw denote the maximum water saturation
for which (Sw, Sg) ∈ l in the saturation triangle T. For N ∈ N sufficiently large, let

S−w (n) =
n

N
Smaxw n = 0, 1, 2, ...N , (4.1)

denote a uniform partition of the interval [0, Smaxw ] and let B (n) :=
¡
S−w (n) , S

−
g (n)

¢
de-

note the corresponding partition of l. For each n ∈ {0, 1, ...N} we determine at B (n) the
eigenvector −→e 2 corresponding to the eigenvalue e2 = 0. This vector is indicated in Figure
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Figure 4.2. Construction of solution for η < 0, with u = 1. Here B (n)
denotes the point

¡
S−w (n) , S

−
g (n)

¢
4.2. In its direction we solve the two saturation equations from (TW ) with u = 1, kept
fixed. The corresponding solution is represented by the orbit Γ (n) in Figure 4.2. It reaches
(Sw = S0w (n) , Sg = 0) at finite η. Later on we shall redefine η such that η = 0 corresponds
to point C in Figure 4.1.
Next we construct the solution for η > 0. For given n ∈ {0, ..., N} we first determine from

(RH) the corresponding water saturation S+w (n) and the downstream fluid discharge u
+ (n) .

This yields the point D (n) = {u+ (n) , S+w (n) , 0} as indicated in Figure 4.3.
Again we use (RH) , now to put equations (TW ) , for η > 0, in the form

(TW+)

⎧⎨⎩
u0 = − (1− α) rSg,
S 0w = ufw − vSw +

α
1−αu− F+

w (n) ,
S 0g = ufg − vSg − 1

1−αu− F+
g (n) ,

where
F+
w (n) = u+ (n) fw (S

+
w (n) , 0)− vS+w (n) +

α
1−αu

+ (n) ,
F+
g (n) = − 1

1−αu
+ (n) .

We first determine the nature of the stationary point D (n) . From the Jacobian matrix at
D (n) we find one negative and two positive eigenvalues:

λ1 = −v
2
− 1

2

√
v2 + 4r < 0

λ2 = −v
2
+ 1

2

√
v2 + 4r > 0

λ3 = u+ (n) ∂fw
∂Sw

(S+w (n) , 0)− v > 0

The latter being positive follows directly from a consistency condition: all characteristic
speeds in the two-phase Buckley-Leverett regime must exceed the speed of the steam con-
densation front, see also [7]. Only the negative eigenvalue λ1 is relevant and we have to
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Sw

Sg

u

u+(n) D(n)
Y

B G

R R

i

j

k

S+
w(n)

Figure 4.3. Sketch of exit sets near D (n) = (u+ (n) , S+w (n) , 0)

verify that the corresponding eigenvector −→e 1 points into domain R. Indeed a straightfor-
ward computation gives

−→e 1 ·−→k
−→e 1 ·−→i

=
1

2

v +
√
v2 + 4r

(1− α) r
> 0 for all n ∈ {0, 1, ..., N} .

Here
−→
i and

−→
k are unit vectors as indicated in Figure 4.3. This inequality shows that −→e 1

points in the direction of increasing u and Sg. Part of the orbit representing the solution
(TW+) is sketched in Figure 4.3.

Remark 4.1. An eigenvector corresponding to λ3 is
−→e 3 = (0, 1, 0) . Indeed, a solution of

(TW+) is (u = u+ (n) , Sw, Sg = 0) with Sw satisfying

S 0w = u+
¡
fw (Sw)− fw

¡
S+w
¢¢− v

¡
Sw − S+w

¢
.

Let us now turn to the full solution in R. For a fixed n, with corresponding curve Γ (n)
we solve equations

¡
TW+_

¢
with points from Γ (n) as initial condition. Since u0 < 0, the

solution orbit will move into R. As a first observation we note that any such orbit cannot
leave R through the side

S =
©
(u, Sw, Sg) : u

+ < u < 1, Sw + Sg = 1
ª
.

Proposition Any solution (u (η) , Sw (η) , Sg (η)) of (TW+) that belongs to the interior of
R for some η = ηo > 0, cannot exit R through S for η > ηo.
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Proof. We argue by contradiction. Suppose there exists η1 > ηo such that (u (η) , Sw (η) , Sg (η)) ∈
int (R) for η < η1 and (u (η1) , Sw (η1) , Sg (η1)) ∈ S. Then at η = η1 we must have

d

dη

⎛⎝ u
Sw
Sg

⎞⎠ ·
⎛⎝ 0
1
1

⎞⎠ = (Sw + Sg)
0 ≥ 0 . (4.2)

However, considering (TW+) at η1 and the fact that Sw + Sg = fw + fg = 1 we find

(Sw + Sg)
0 = −v − u+f+w + vS+w + u+

= u+f+o − vS+o

= f−o − vS−o ,

where we used S+g = 0 and the oil mass balance from (RH) .
We claim that

f−o − vS−o < 0 for all
¡
S−w , S

−
g

¢ ∈ , (4.3)

which would contradict (4.2) and complete the proof. Any point B ∈ is the end point of
a fast rarefaction originating from point A. In terms of the oil saturation this rarefaction
satisfies, with ξ = x/t,

−ξ dSo
dξ

+
dfo
dξ
= 0 for 0 < ξ < v .

Integrating this expression gives

−vS−o + f−o +

vZ
0

So (ξ) dξ = 0 , (4.4)

which directly implies inequality (4.3). ¤
Remark 4.2. Equation (4.4) expresses the oil balance in the steam region. In terms of x
and t we have

vtZ
0

So (x, t) dx+
¡
f−o − vS−o

¢
t = 0 for all t > 0,

where (f−o − vS−o ) denotes the oil flux with respect to the moving front.

Thus selecting a point on the curve Γ (n) , the corresponding solution orbit leaves R
through one of the following exit sets (see also Figure 4.3):

R(red) := {Sw = 0} ∪ {u = u+, 0 < Sw < S+w}
B (blue) := {Sg = 0, 0 < Sw < S+w}

Y (yellow) := {u = u+, S+w < Sw < 1}
G (green) := {Sg = 0, S+w < Sw < 1}

A point on Γ (n) is now colored red, blue, yellow or green depending on the exit set of
the orbit. For large N and for a large number of points on Γ (n), we cover in this way
the front triangle below with these four colors. The point where they meet, denoted by
C = {u = 1, Sw (C) , Sg (C)}, and the path through it determines the unique orbit (traveling
wave) through R. For the simplified expressions (3.12) and (3.13) and with

v = 0.4, r = 20 and α = 0.4,
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Figure 4.4. Color distribution in saturation triangle at T.

we computed the color distribution. The result is shown in Figure 4.4, where Sw (C) =
0.582149 and Sg (C) = 0.149027. From the orbits for η < 0 and η > 0 we obtain:

S−w = 0.107351, S
−
g = 0.789397, S

−
o =0.103252

S+w = 0.698487, S
+
o = 0.301513, u

+=0.610082

and

Λ (r) = r

∞Z
0

Sg (η) dη = 0.649858.

5. Towards thermodynamic equilibrium

The parameter r in equations (2.20)-(2.22) describes the finite rate condensation process.
On physical grounds one expects that the limit r →∞ will bring the process in thermody-
namic equilibrium with either T = 1, meaning boiling point temperature, or Sg = 0, with
all steam condensing at the steam condensation front. Below we demonstrate this behavior
for traveling waves satisfying (TW ) , (RH) and (E) . Introducing the notation Si = Si (η; r)
and u (η; r) , we show that

lim
r→∞

r (1− T (η))Sg (η; r) = Λ (∞) δ (η) , (5.1)

where Λ (∞) denotes the limiting-instantaneous condensation rate and δ the Dirac measure
at η = 0. Integrating (5.1) and using (2.25), gives

Λ (∞) = lim
r→∞

r

∞Z
0

Sg (η; r) dη, (5.2)
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which is in agreement with condensation rate (3.11) in the hyperbolic limit. Replacing the
condensation terms in (3.8) by (5.1), results in the base case discussed in [7].
In terms of the orbit in Figure 4.1, the large r limit means that the point C shifts towards

the bottom of R and that the solution for η > 0 lies entirely in the bottom set {Sg = 0} .
To demonstrate (5.1) we integrate the u equation from (TW ) in R. This gives for any

r > 0

1− u+ (r) = (1− α) r

Z
R

(1− T (η))Sg (η; r) dη

= (1− α) r

Z
R+

Sg (η; r) dη > 0.

Using conditions RH we find

1 > u+ (r) = 1− (1− α)
¡
f−g − vS−g

¢
> α+ (1− α) vS−g > α.

Hence

0 <

Z
R+

Sg (η; r) dη <
1

r
for all r > 0 . (5.3)

The Sg-equation in (TW ) implies the existence of a constant L >0 such that¯̄
S 0g (η; r)

¯̄ ≤ L for all η, r > 0. (5.4)

Hence from (5.3) and (5.4),

lim
r→∞

Sg (η; r) = 0, uniformly in η ≥ 0. (5.5)

We want to use this convergence in the Sg-equation to control S0g (η; r) as r→∞. For this
purpose we first write

S 0g = ufg − vSg − 1

1− α

¡
u− u+

¢
. (5.6)

Multiplying this equation by any test function ϕ ∈ C∞o (R+) and integrating the result in
R+, gives

−
Z
R+

Sgϕ
0dη =

Z
R+

(ufg − vSg)ϕdη − 1

1− α

Z
R+

¡
u− u+

¢
ϕdη.

In this expression we send r→∞ and use (5.5). This yields

lim
r→∞

Z
R+

¡
u (η; r)− u+ (r)

¢
ϕ (η) dη = 0 (5.7)

for all ϕ ∈ C∞o (R+) .
Once more we consider the u-equation, which we multiply by ψ ∈ C∞o (R+) and integrate

in R+ to find Z
R+

¡
u (η; r)− u+ (r)

¢
ψ0 (η) dη = (1− α) r

Z
R+

Sg (η; r)ψ (η) dη.
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Since ψ0 ∈ C∞o (R+) as well, we can use (5.7) and obtain

lim
r→∞

r

Z
R+

Sg (η; r)ψ (η) dη = 0 for all ψ ∈ C∞o
¡
R+
¢
, (5.8)

which implies
lim
r→∞

rSg (η; r) = 0, pointwisely in η > 0. (5.9)

To see this we use the following argument. For each n ∈ N, n > 1, the interval
¡
0, 1

n

¢
must

contain a point ηn where rSg (ηn; r) → 0 as r → ∞. This is a direct consequence of (5.8).
Hence for η = ηn and ε > 0 there exists r∗ > 0 such that

rSg (ηn; r) < ε for all r > r∗.

Using this and equation (5.6) we have that Sg (ηn; r) becomes small with S 0g (ηn; r) < 0, due
to the quadratic terms in fg, for r sufficiently large. Hence

rSg (η; r) < ε for all r > r∗ and η ≥ ηn,

implying statement (5.9).
Thus we have shown that

lim
r→∞

r (1− T (η))Sg (η; r) = 0, pointwisely in R\ {0}
and

Λ (r) = r

Z
R

(1− T (η))Sg (η; r) dη =
1− u+ (r)

1− α
< 1

for all r > 0. This establishes (5.1) provided

Λ (r) =
1− u+ (r)

1− α
=
¡
f−g − vS−g

¢
(r) (from RH) (5.10)

remains strictly positive for all r > 0.We verified the behavior of Λ (r) numerically. Compu-
tational results show that Λ (r) depends only slightly on r and changes from Λ (r) = 0.6476
for r = 1.95313× 10−3 to Λ (r) = 0.6499 for r = 4096. In the same range S−g changes from
0.80993 to 0.789344 (see (5.10)). Note that the four color point C from Figure 4.1, with
Sw = Sw (C) and Sg = Sg (C) , changes significantly with r. This is shown in Figure 5.1.
However, the quantities describing the global solution such as the downstream velocity u+

and the saturation values S−w , S
−
g , and S+w depend only very weakly on r. This is illustrated

in in Figure ?? for the upstream saturations.

6. A realistic case and comparison to previous results

In the previous sections we demonstrate the use of traveling waves to obtain the phys-
ically correct saturation and total Darcy velocity values at the steam condensation front.
The emphasis was on the principle of construction. Therefore we disregarded various (non-
trivial) technicalities, such as temperature dependent viscosities (we still disregard the T
dependence of the gas viscosity), and saturation dependent capillary diffusion, coefficients
and we disregarded the realistic values of the physical parameters as given in the table.
In this section we are going to carry out the construction in a more realistic setting

with the aim to explicit the influence of the finite condensation rate under more practical
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Figure 5.1. The four color intersection point C depends strongly on the rate
paramete r. The effect on the global solution is not zero, but extremely small.

Figure 5.2. Upstream saturations depend only weakly on of the reaction rate
parameter r.

circumstances. We also give a comparison to the results in [7], where we considered several
extensions, but all under equilibrium conditions.
With reference to the table we introduce

• temperature dependent viscosities, yielding the temperature dependent viscosity ra-
tios

Mow =
µo
µw

and Mgw =
µg
µw
;

• Brooks-Corey capillary pressures (see [1]), yielding additional terms in the expressions
for water and gas discharge (see equations (2.14)-(2.17));
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• different relative permeabilities. As in [7] we consider fourth order power law expres-
sions as well as unnormalized Stone I formulas (see [9], [17]):

krw = krw (Swe) =
1

2
S
2+3λs
λs

we (6.1)

krg = krg (Sge) = (1− Sge)
2(1− S

2+λs
λs

ge ) (6.2)

kro =
kSo(1− Swc)krg (Swe) krw (Sge)

(1− Sw)(1− Swc − Sg)
(6.3)

where Swe = Sw−Swc
1−Swc , Sge =

1−Sg−Swc
1−Swc . Using a gas saturation dependent residual oil

saturation is for the steam drive problem an unnecessary complication and therefore
we assume that the residual oil saturation is always zero.

With these extensions the model equations in full dimensional form are

∂u

∂x
= − (1− α)

q

ρg
, (6.4)

ϕ
∂Sw
∂t

+
∂

∂x

µ
ufw −Dww

∂Sw
∂x
−Dwg

∂Sg
∂x

¶
=

q

ρw
, (6.5)

ϕ
∂Sg
∂t

+
∂

∂x

µ
ufg −Dgw

∂Sw
∂x
−Dgg

∂Sg
∂x

¶
= − q

ρg
. (6.6)

Note that the fractional flow functions fα, and hence the diffusivities Dαβ, are discontinu-
ous across the steam condensation front. This is due to the temperature dependence of the
mobility ratios.
Using (6.4) to estimate q from (6.5) and (6.6), substituting (2.1) in (6.4) and applying the

scalings (2.18) and (2.19) gives

∂u

∂x
= − qbL

uinj
(1− α) (1− T )Sg, (6.7)

∂Sw
∂t

+
∂

∂x

µ
ufw −D∗

µ
Jww∂Sw

∂x
+ Jwg

∂Sg
∂x

¶¶
=

α

α− 1
∂u

∂x
, (6.8)

∂Sw
∂t

+
∂

∂x

µ
ufg −D∗ ∂

∂x

µ
Jgw ∂Sw

∂x
+ Jgg

∂Sg
∂x

¶¶
= − 1

α− 1
∂u

∂x
, (6.9)

Here

D∗ = σ

µ∗wLuinj

p
kϕ

µ 1
2
− Swc

1− Swc

¶1/λs
where again µ∗w is an appropriately chosen characteristic water viscosity (here the viscosity
at the initial reservoir temperature) and
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Jww = µ∗w
µw

λsfw
1− Swc

µ
kro
Mow

+
krg
Mgw

¶µ
Sw − Swc
1− Swc

¶−1/λs−1
,

Jwg = −µ
∗
w

µw

λsfw
1− Swc

krg
Mgw

µ
1− Sg − Swc
1− Swc

¶−1/λs−1
,

Jgw = −µ
∗
w

µw

λsfg
1− Swc

krw

µ
Sw − Swc
1− Swc

¶−1/λs−1
,

Jgg = µ∗w
µw

λsfg
1− Swc

µ
kro
Mow

+ krw

¶µ
1− Sg − Swc
1− Swc

¶−1/λs−1
. (6.10)

Introducing the reciprocal Peclet number ε and the dimensionless rate constant r as

ε :=
σ

µ∗wLuinj

p
Kϕ

µ 1
2
− Swc

1− Swc

¶1/λs
, (6.11)

r := qb
σ

µ∗wu
2
inj

p
Kϕ

µ 1
2
− Swc

1− Swc

¶1/λs
= εqb

L

uinj
, (6.12)

applying a traveling wave coordinate transformation η = (x− vt) /ε and integrating the
resulting equations leads to the system, with −∞ < η <∞,

u0 = −r (1− α) (1− T )Sg, (6.13)

JwwS 0w + JwgS 0g = ufw − vSw − α (1− u)

1− α
− (ufw − vSw)

− (6.14)

JgwS0w + JggS
0
g = ufg − vSg − u− 1

1− α
− (ufg − vSg)

− , . (6.15)

Note that qbL/uinj, the Damkohler number, is considered to be of the same order of
magnitude as the Peclet number 1/ε. As before, we look for solutions satisfying boundary
conditions (BC) subject to the constraints (E) and (RH). Note that equations (6.13)-(6.15)
reduce to (TW) when Jwg = Jgw = 0 and Jww = Jgg = 1.
Equations (6.14) and (6.15) can be rearranged to explicit expressions for S 0w and S 0g if the

determinant ¯̄̄̄ Jww Jwg

Jgw Jgg

¯̄̄̄
6= 0.

It is straightforward to verify these conditions. Details are omitted. The rearranged
equations, with explicit S 0w and S 0g are used in the numerical procedure.

6.1. Procedure for determining the traveling wave orbit. The procedure to find the
traveling wave describing the processes in the steam condensation front for the realistic case
is slightly different from the procedure used in the previous sections. The reason is that we
need a more robust method for solutions with small values of the reaction rate parameter r,
for which the four color point (see Figure 4.4) approaches the line satisfying condition (3.5).
Our aim is to find the orbit D − C − B (n) satisfying (6.13)-(6.15), satisfying the Rankine
Hugoniot conditions and condition (3.5). First we choose as an initial guess a value n0 and de-
termine as in (4.1) the corresponding value of Sw (n0). Subsequently we apply condition (3.5)
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Figure 6.1. The orbits from
¡
u− = 1, S−g , S

−
w

¢
in the plane u = 1 and orbits

in the negative η direction from
¡
u+, S+g , S

+
w

¢
that intersect in the u = 1 plane

at C are found using bissection (see text).

to determine Sg (n0) and thus point B (n0) on (see Figure 6.1). Subsequently we determine
from the left (upstream) values of

¡
u− = 1, S−w , S

−
g

¢
at B (n0) the right (downstream) values¡

u+, S+w , S
+
g

¢
i.e. point D0 in Figure 6.1, using the Rankine Hugoniot conditions (3.4). At the

equilibrium point B (n0) we determine the eigenvector to obtain the first point on the orbit
away from it.We use this point as initial condition for the rearranged conditions (6.13)-(6.15)
in the hot-upstream-region and we determine as before the corresponding orbit until we hit
Sg = 0. We compute the orbit emanating from B (n0) using Eq. (6.13)-(6.15) in the positive
η direction until we hit the Sg = 0 axis. We call this orbit Γ (n0) . At the downstream point
D0 =

¡
u+, S+w , S

+
g

¢
we apply a similar procedure i.e. we determine the eigenvector pointing

into the domain R to obtain the first point away from this equilibrium point. Then we solve
the rearranged equations (6.13)-(6.15) in the cold-downstream region, this time in the nega-
tive η direction until we hit the u = 1 plane with values (Sw (C 0) , Sg (C 0)) (see Figure 6.1).
We choose a second guess e.g. en0 to start at at a new point B (en0) to the right or left with
respect to B (n0) depending on whether Sw (C 0) was to the right or to the left of Γ (n0) and
repeat the procedure above. For the sequence of points n0, en0, ... we use a bisection routine
until we approximate the complete orbit B (n)− C −D, with (Sw (C) , Sg (C)) on the orbit
Γ (n).

6.2. Results. Figure (6.2) shows the upstream oil saturation as a function of the reaction
rate parameter. We distinguish four cases where we use either Stone I expressions (6.1-
6.3) (ST) or power law expressions (PL) for the relative permeability and either a constant
capillary diffusion (D) (see Table) or a saturation dependent capillary diffusion coefficient
(Pc) (see (2.17)). Figure (6.2) also shows, for each of these cases, the oil saturation obtained
when thermodynamic equilibrium is assumed [7]. As to be expected from Section 5, the oil
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Figure 6.2. Upstream oil saturation as a function of the reaction rate pa-
rameter. There are four cases. PL = powerlaw relative permeabilities,
ST = Stone I relative permeabilities, D = constant capillary diffusion,
Pc =saturation dependent capillary diffusion. for constant capillary diffu-
sion (D) or for saturation dependent capillary diffusion coefficients (Pc) . The
points (Eq, PL,D), (Eq, PL, Pc), (Eq, ST,D) and (Eq, PL,Pc) correspond
the solutions obtained for thermodynamic equilibrium.

saturation values are about equal to the values obtained for large reaction rate parameters.
It is evident that in all cases the global solution depends strongly on the capillary pressure
behavior for the same relative permeability expressions. The numerical results, shown in
Figure (6.2), suggest that the global solution in terms of the values S−w , S

−
g , S

+
w , u

+ is very
insensitive to the reaction rate parameter except for the case where we combine saturation
dependent capillary pressures and Stone I expressions for the relative permeabilities.

7. Conclusions

(1) A hyperbolic model for steam displacement of oil was extended with a finite rate
condensation model in the transition zone.

(2) The traveling wave describing the shock solution is a saddle to saddle connection.
Consequently, the global solution depends on the details of the condensation model
within the shock.

(3) Using color coding it has been shown numerically that, given the parameters describ-
ing the condensation process, there is a unique set of values S−w , S

−
g , S

+
w and u+ etc.

for which a traveling wave exists (see Figure (4.4)).
(4) A proof was given that the solution with an infinite reaction rate parameter tends to

the solution obtained when thermodynamic equilibrium is assumed.
(5) The numerical solutions show that there is a dependence of the global solution on

the reaction rate parameter. For power law relative permeabilities, this dependence
is very weak.

(6) The procedure described can also be used for a realistic set of input variables. When
we combine Stone I relative permeabilities with saturation dependent capillary pres-
sures the effect of the reaction rate parameter is significant.
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