48 research outputs found

    Waardevol - Indicatoren voor Valorisatie

    Get PDF
    Het rapport Waardevol – Indicatoren voor valorisatie biedt kennisinstellingen, wetenschapsfinanciers en kennisgebruikers een gemeenschappelijk kader voor valorisatie. De methode werkt met valorisatiekaarten waarmee betrokken organisaties systematisch kunnen monitoren hoe groot de valorisatie-inspanningen zijn, wat de opbrengsten zijn en welke mogelijkheden voor verbetering er zijn. Het gebruik van valorisatiekaarten zal helpen om het inzicht te vergroten in wat publieke kennisinstellingen, wetenschapsfinanciers en bedrijfsleven nu al doen aan valorisatie.

    Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona (Spain) during SAPUSS

    Get PDF
    This study investigates the contribution of potential sources to the submicron (PM<sub>1</sub>) organic aerosol (OA) simultaneously detected at an urban background (UB) and a road site (RS) in Barcelona during the 30 days of the intensive field campaign of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies, September–October 2010). A total of 103 filters at 12 h sampling time resolution were collected at both sites. Thirty-six neutral and polar organic compounds of known emission sources and photo-chemical transformation processes were analyzed by gas chromatography–mass spectrometry (GC-MS). The concentrations of the trace chemical compounds analyzed are herein presented and discussed. <br><br> Additionally, OA source apportionment was performed by multivariate curve resolution–alternating least squares (MCR-ALS) and six OA components were identified at both sites: two were of primary anthropogenic OA origin and three of secondary OA origin, while a sixth one was not clearly defined. Primary organics from emissions of local anthropogenic activities (urban primary organic aerosol, or POA Urban), mainly traffic emissions but also cigarette smoke, contributed 43% (1.5 μg OC m<sup>&minus;3</sup>) and 18% (0.4 μg OC m<sup>&minus;3</sup>) to OA at RS and UB, respectively. A secondary primary source – biomass burning (BBOA) – was found in all the samples (average values 7% RS; 12% UB; 0.3 μg OC m<sup>&minus;3</sup>), but this component was substantially contributing to OA only when the sampling sites were under influence of regional air mass circulation (REG.). Three secondary organic aerosol (SOA) components (describing overall 60% of the variance) were observed in the urban ambient PM<sub>1</sub>. Products of isoprene oxidation (SOA ISO) – i.e. 2-methylglyceric acid, C<sub>5</sub> alkene triols and 2-methyltetrols – showed the highest abundance at both sites when the city was under influence of inland air masses. The overall concentrations of SOA ISO were similar at both sites (0.4 and 0.3 μg m<sup>−3</sup>, or 16% and 7%, at UB and RS, respectively). By contrast, a SOA biogenic component attributed to &alpha;-pinene oxidation (SOA BIO PIN) presented average concentrations of 0.5 μg m<sup>−3</sup> at UB (24% of OA) and 0.2 μg m<sup>&minus;3</sup> at RS (7%), respectively, suggesting that this SOA component did not impact the two monitoring sites at the same level. A clear anti-correlation was observed between SOA ISO and SOA PIN during nucleation days, surprisingly suggesting that some of the growth of urban freshly nucleating particles may be driven by biogenic α-pinene oxidation products but inhibited by isoprene organic compounds. A third SOA component was formed by a mixture of aged anthropogenic and biogenic secondary organic compounds (SOA Aged) that accumulated under stagnant atmospheric conditions, contributing for 12% to OA at RS (0.4 μg OC m<sup>&minus;3</sup>) and for 18% at UB (0.4 μg OC m<sup>&minus;3</sup>). <br><br> A sixth component, formed by C<sub>7</sub>–C<sub>9</sub> dicarboxylic acids and detected especially during daytime, was called "urban oxygenated organic aerosol" (OOA Urban) due to its high abundance at urban RS (23%; 0.8 μg OCm<sup>&minus;3</sup>) vs. UB (10%; 0.2 μg OCm<sup>&minus;3</sup>), with a well-defined daytime maximum. This temporal trend and geographical differentiation suggests that local anthropogenic sources were determining this component. However, the changes of these organic molecules were also influenced by the air mass trajectories, indicating that atmospheric conditions have an influence on this component, although the specific origin on this component remains unclear. It points to a secondary organic component driven by primary urban sources including cooking and traffic (mainly gasoline) activities

    Drivers of atmospheric deposition of polycyclic aromatic hydrocarbons at European high-altitude sites

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) were analysed in bulk atmospheric deposition samples collected at four European high-mountain areas, Gossenköllesee (Tyrolean Alps), Redon (Central Pyrenees), Skalnate Pleso (High Tatra Mountains), and Lochnagar (Grampian Mountains) between 2004 and 2006. Sample collection was performed monthly in the first three sites and biweekly in Lochnagar. The number of sites, period of study and sampling frequency provide the most comprehensive description of PAH fallout in high mountain areas addressed so far. The average PAH deposition fluxes in Gossenköllesee, Redon and Lochnagar ranged between 0.8 and 2.1µgm−2month−1, and in Skalnate Pleso it was 9.7µgm−2month−1, showing the influence of substantial inputs from regional emission sources. The deposited distributions of PAHs were dominated by parent phenanthrene, fluoranthene and pyrene, representing 32%–60% of the total. The proportion of phenanthrene, the most abundant compound, was higher at the sites of lower temperature, Gossenköllesee and Skalnate Pleso, showing higher transfer from gas phase to particles of the more volatile PAHs. The sites with lower insolation, e.g. those located at lower altitude, were those with a higher proportion of photooxidable compounds such as benz[a]anthracene. According to the data analysed, precipitation is the main driver of PAH fallout. However, when rain and snow deposition were low, particle settling also constituted an efficient driver for PAH deposition. Redon and Lochnagar were the two sites receiving the highest amounts of rain and snow and the fallout of PAH fluxes was related to this precipitation. No significant association was observed between long-range backward air trajectories and PAH deposition in Lochnagar, but in Redon PAH fallout at higher precipitation was essentially related to air masses originating from the North Atlantic, which were dominant between November and May (cold season). In these cases, particle-normalised PAH fallout was also associated with higher precipitation as these air masses were concurrent with lower temperatures, which enhanced gas to particle partitioning transfer. In the warm season (June–October), most of the air masses arriving at Redon originated from the south and particle deposition was enhanced as consequence of Saharan inputs. In these cases, particle settling was also a driver of PAH deposition despite the low overall PAH content of the Saharan particles. In Gossenköllesee, the site receiving lowest precipitation, PAH fallout was also related to particle deposition. The particle-normalised PAH fluxes were significantly negatively correlated to temperature, e.g. for air masses originating from central and eastern Europe, showing a dominant transfer from gas phase to particles at lower temperatures, which enhanced PAH fallout, mainly of the most volatile hydrocarbons. Comparison of PAH atmospheric deposition and lacustrine sedimentary fluxes showed much higher values in the latter case of 24–100µgm−2yr−1 vs. 120–3000µgm−2yr−1. A strong significant correlation was observed between these two fluxes, which is consistent with a dominant origin related to atmospheric deposition at each site

    Assessment of exposure to DDT and metabolites after indoor residual spraying through the analysis of thatch material from rural African dwellings

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.[Introduction] We report on the analysis of 4,4′-dichlorodiphenyltrichloroethane (4,4′-DDT) and its metabolites in thatch and branch samples constituting the wall materials of dwellings from South African subtropical areas. This approach was used to assess the exposure to DDT in the residents of the dwellings after indoor residual spraying (IRS) following recommended sanitation practices against malaria vectors.[Discussion] Examination of the distributions of DDT compounds (2,4′-DDT, 4,4′-DDT and its metabolites) in 43 dwellings from the area of Manhiça (Mozambique) has shown median concentrations of 19, 130, and 23 ng/g for 2,4′-DDT, 4,4′-DDT, and 4,4′-DDE, respectively, in 2007 when IRS implementation was extensive. The concentrations of these compounds at the onset of the IRS campaign (n = 48) were 5. 5, 47, and 2. 2 ng/g, respectively. The differences were statistically significant and showed an increase in the concentration of this insecticide and its metabolites. Calculation of 4,4′-DDT in the indoor air resulting from the observed concentrations in the wall materials led to the characteristic values of environments polluted with this insecticide. © 2011 The Author(s).Funding was received from MICINN (INMA G03/176, Consolider Ingenio GRACCIE, CSD2007-00067), CSIC (PIF06-053), and ArcRisk EU Project (FP7-ENV-2008-1-226534).Peer reviewe

    Secondary organic aerosol origin in an urban environment: Influence of biogenic and fuel combustion precursors

    Get PDF
    Source contributions of organic aerosol (OA) are still not fully understood, especially in terms of quantitative distinction between secondary OA formed from anthropogenic precursors vs. that formed from natural precursors. In order to investigate the OA origin, a field campaign was carried out in Barcelona in summer 2013, including two periods characterized by low and high traffic conditions. Volatile organic compound (VOC) concentrations were higher during the second period, especially aromatic hydrocarbons related to traffic emissions, which showed a marked daily cycle peaking during traffic rush hours, similarly to black carbon (BC) concentrations. Biogenic VOC (BVOC) concentrations showed only minor changes from the low to the high traffic period, and their intra-day variability was related to temperature and solar radiation cycles, although a decrease was observed for monoterpenes during the day. The organic carbon (OC) concentrations increased from the first to the second period, and the fraction of non-fossil OC as determined by C analysis increased from 43% to 54% of the total OC. The combination of C analysis and Aerosol Chemical Speciation Monitor (ACSM) OA source apportionment showed that the fossil OC was mainly secondary (>70%) except for the last sample, when the fossil secondary OC only represented 51% of the total fossil OC. The fraction of non-fossil secondary OC increased from 37% of total secondary OC for the first sample to 60% for the last sample. This enhanced formation of non-fossil secondary OA (SOA) could be attributed to the reaction of BVOC precursors with NO emitted from road traffic (or from its nocturnal derivative nitrate that enhances night-time semi-volatile oxygenated OA (SV-OOA)), since NO concentrations increased from 19 to 42 μg m from the first to the last sample

    Valorisatie als feitelijke kerntaak van de universiteiten

    No full text

    Beoordelen van de maatschappelijke kwaliteit van onderzoek

    No full text
    Het beoordelen van de maatschappelijke kwaliteit van onderzoek is moeilijk maar noodzakelijk. In dit artikel beschrijven de auteurs een methode om de maatschappelijke kwaliteit van onderzoek te beoordelen.

    Evaluatie van gezamenlijke kennisproductie

    Get PDF
    De vraag die in deze publicatie centraal staat luidt: hoe kan onderzoek zo worden georganiseerd dat het bijdraagt aan de oplossing van grote maatschappelijke vraagstukken?Kenniscoproductie gaat niet vanzelf. Het combineren van verschillende vormen van kennis is buitengewoon complex. De arrangementen in deze bundel laten zien dat kenniscoproductie mogelijk is, maar dat extra inspanningen nodig zijn. Uit de beschrijving van de arrangementen die in dit rapport zijn gepresenteerd, trekken we zes conclusies over de organisatie en inbedding van kenniscoproductie
    corecore