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Abstract. Polycyclic aromatic hydrocarbons (PAHs) were
analysed in bulk atmospheric deposition samples collected
at four European high-mountain areas, Gossenköllesee (Ty-
rolean Alps), Redon (Central Pyrenees), Skalnate Pleso
(High Tatra Mountains), and Lochnagar (Grampian Moun-
tains) between 2004 and 2006. Sample collection was per-
formed monthly in the first three sites and biweekly in
Lochnagar. The number of sites, period of study and sam-
pling frequency provide the most comprehensive description
of PAH fallout in high mountain areas addressed so far.

The average PAH deposition fluxes in Gossenkölle-
see, Redon and Lochnagar ranged between 0.8 and
2.1 µg m−2 month−1, and in Skalnate Pleso it was
9.7 µg m−2 month−1, showing the influence of substan-
tial inputs from regional emission sources. The deposited
distributions of PAHs were dominated by parent phenan-
threne, fluoranthene and pyrene, representing 32 %–60 % of
the total. The proportion of phenanthrene, the most abundant
compound, was higher at the sites of lower temperature,

Gossenköllesee and Skalnate Pleso, showing higher transfer
from gas phase to particles of the more volatile PAHs. The
sites with lower insolation, e.g. those located at lower alti-
tude, were those with a higher proportion of photooxidable
compounds such as benz[a]anthracene.

According to the data analysed, precipitation is the main
driver of PAH fallout. However, when rain and snow depo-
sition were low, particle settling also constituted an efficient
driver for PAH deposition. Redon and Lochnagar were the
two sites receiving the highest amounts of rain and snow and
the fallout of PAH fluxes was related to this precipitation.
No significant association was observed between long-range
backward air trajectories and PAH deposition in Lochnagar,
but in Redon PAH fallout at higher precipitation was essen-
tially related to air masses originating from the North At-
lantic, which were dominant between November and May
(cold season). In these cases, particle-normalised PAH fall-
out was also associated with higher precipitation as these air
masses were concurrent with lower temperatures, which en-
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hanced gas to particle partitioning transfer. In the warm sea-
son (June–October), most of the air masses arriving at Re-
don originated from the south and particle deposition was
enhanced as consequence of Saharan inputs. In these cases,
particle settling was also a driver of PAH deposition despite
the low overall PAH content of the Saharan particles.

In Gossenköllesee, the site receiving lowest precipitation,
PAH fallout was also related to particle deposition. The
particle-normalised PAH fluxes were significantly negatively
correlated to temperature, e.g. for air masses originating from
central and eastern Europe, showing a dominant transfer
from gas phase to particles at lower temperatures, which en-
hanced PAH fallout, mainly of the most volatile hydrocar-
bons.

Comparison of PAH atmospheric deposition and lacustrine
sedimentary fluxes showed much higher values in the lat-
ter case of 24–100 µg m−2 yr−1 vs. 120–3000 µg m−2 yr−1.
A strong significant correlation was observed between these
two fluxes, which is consistent with a dominant origin related
to atmospheric deposition at each site.

1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are semi-volatile
organic compounds (SOCs) originating from incomplete
combustion and pyrolysis of carbonaceous materials. In ad-
dition to natural sources, the global emissions of these com-
pounds are dominated by anthropogenic activity such as fos-
sil fuel combustion (Wild and Jones, 1995; Pacyna et al.,
2003), which are responsible for their ubiquitous occurrence
in the environment, especially in urban/industrial regions. In
Europe, the emission of PAHs in 2004 was estimated about
5.1×104 tons (calculated for 16 PAHs), with residential com-
bustion representing 88 % of the total contribution, followed
by industrial activities (van der Gong et al., 2007).

The widespread distribution of PAHs is of great environ-
mental concern, since several parent (non-methylated) com-
pounds of this group of hydrocarbons are human carcino-
gens and priority pollutants (Baek et al., 1991; IARC, 1983;
Armstrong et al., 2004). Moreover, the Convention on Long-
range Transboundary Air Pollution included PAHs in the list
of persistent organic pollutants (POPs) (UNECE, 1998), the
emissions of which should be reduced to 1990 levels (EC,
2001). Implementation of regulatory activity caused an ini-
tial decrease in PAH emissions (Meijer et al., 2008) but re-
cent studies showed that PAHs have increased globally as a
consequence of a higher urban population, energy consump-
tion and vehicle use (van Metre and Mahler, 2005).

Once in the atmosphere, PAHs may remain in the gas
phase or associate with particles (Gustafson and Dickhut,
1997; Park et al., 2001; Simcik et al., 1998), be degraded by
direct and/or indirect photolysis (Wang et al., 2011a, Zhang
et al., 2018) and be deposited by wet and dry processes

(Golomb et al., 2001; Halsall et al., 2001; Feng et al., 2017).
Deposited PAHs may revolatilise, be transported over long
distances and be deposited again on soil and water surfaces
far from the emission sources (Fernández et al., 2003; Singh
et al., 2017), e.g. in high-altitude areas (Fernández et al.,
2000, 2002; Vilanova et al., 2001; Vives et al., 2004; Gri-
malt et al., 2001, 2004; Halsall et al., 2001; Arellano et al.,
2011; van Drooge et al., 2010; Yang et al., 2016).

Atmospheric deposition is one of the main mechanism
of transport of PAHs to all ecosystems (Leister and Baker,
1994). Direct measurements of the atmospheric deposition
of these pollutants have mostly been performed in indus-
trial/urban areas (Halsall et al., 1997; Franz et al., 1998;
Golomb et al., 2001; Park et al., 2001; Garban et al., 2002;
Gigliotti et al., 2005; Gocht et al., 2007; Esen et al., 2008;
Wang et al., 2011b; Bari et al., 2014). Only in a few cases
has deposition been considered in remote areas such as high-
altitude regions (Fernández et al., 2003; Offenthaler et al.,
2009; Foan et al., 2012). However, high mountain areas pro-
vide the reference background information of the pollution
impact, in this case PAHs, of the overall anthropogenic ac-
tivities in large regions. The study of the processes of trans-
port and pollutant incorporation into these remote ecosys-
tems shows the basic mechanisms of action of these com-
pounds to be far from direct human influence. Understand-
ing of these processes provides basic knowledge for descrip-
tion of the air-to-soil transfer mechanisms in all ecosystems.
Furthermore, these remote areas may also act as secondary
sources of toxic substances as a consequence of re-emission
from terrestrial and aquatic ecosystems by air–water or air–
soil exchange or ice/glacier melting (Ma and Cao, 2010; Ma
et al., 2011; Kirchgeorg et al., 2016).

To improve the knowledge on how PAHs move through
the atmosphere and partition between air and the terres-
trial and aquatic environments, bulk atmospheric deposi-
tion was collected at four high-altitude sites over 2 years,
covering different European climatic and source regions:
Redon (2235 m above sea level, Pyrenees), Gossenköllesee
(2413 m, Alps), Skalnate Pleso (1787 m, Tatras) and Lochna-
gar (790 m, Grampian Mountains). Bulk atmospheric deposi-
tion (dry and wet) was collected monthly in the three former
sites and biweekly in Lochnagar. The samples were analysed
to determine seasonal, spatial and temporal trends of atmo-
spheric PAH inputs and to identify the main processes deter-
mining PAH fallout at each site. Backward air mass trajec-
tories were calculated using the Hybrid Single-Particle La-
grangian Integrated Trajectory (HYSPLIT) model for assess-
ment of the air sources during sampling. To the best of our
knowledge, the number of sites and sampling frequency and
period of study constitute the most comprehensive approach
performed so far on PAH deposition in high mountain areas.
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Table 1. Average temperature, atmospheric precipitation and particle (mg m−2 month−1) and PAH (µg m−2 month−1) monthly deposition
fluxes in the European mountain areas considered in the present study.

Lochnagar Redon Gossenköllesee Skalnate Pleso

Sampling period Jun 2004–Mar 2007 May 2004–Sep 2006 Jun 2004–Aug 2006 May 2004–May 2006
Mountain range Grampian Mountains Pyrenees Tyrolean Alps Tatra Mountains
Latitude (N) 56.95914 42.64208 47.22528 49.189933
Longitude (E) −3.23128 0.77951 11.01390 20.234217
Altitude (m a.s.l.)a 790 2235 2413 1787
Temperature (◦C)b 4.9 5.3 −1.4 2.2
Mean precipitation (mm month−1) 129 79 66 120
Particle flux(min–max) 130 (15–1600) 320 (14–2800) 145 (18–590) 330 (43–1800)∑

PAHc (min–max) 2.1 (0.53–10) 0.80 (0.24–1.4) 1.3 (0.19–3.7) 9.7 (2.3–32)
Warm 1.8 (0.53–4.4) 0.89 (0.24–1.4) 1.3 (0.22–3.7) 8.4 (2.3–15)
Cold 2.25 (0.74–10) 0.63 (0.24–1.2) 1.3 (0.19–3.7) 8.8 (3.6–32)
LMW-PAHd (min–max) 1.1 (0.25–7.6) 0.30 (0.06–0.74) 0.89 (0.09–3.1) 5.6 (1.4–22)
Warm 0.94 (0.25–2.2) 0.30 (0.07–0.74) 0.86 (0.10–3.1) 5.7 (1.4–10)
Cold 1.2 (0.39–7.6) 0.28 (0.06–0.66) 0.90 (0.09–2.8) 4.2 (1.7–22)
HMW-PAHe (min–max) 0.97 (0.08–2.6) 0.49 (0.18–0.94) 0.40 (0.10–0.84) 3.9 (0.73–11)
Warm 0.82 (0.20–2.6) 0.57 (0.21–0.94) 0.42 (0.11–0.98) 2.3 (0.73–4.1)
Cold 1.1 (0.08–2.5) 0.34 (0.18–0.55) 0.41 (0.10–0.84) 4.5 (1.6–11)
PAH (

∑
15 PAH-EPA)f (min–max) 1.9 (0.48–9.6) 0.70 (0.22–1.3) 1.2 (0.17–3.5) 8.8 (2.2–29)

a Metres above sea level. b Mean temperature for the whole sampling period. c Sum of all PAHs analysed from acenaphthylene to coronene. d Sum from fluorene to pyrene.
e Sum from benz[a]anthracene to coronene. f Sum of PAHs included in the EPA list (excluding naphthalene).

2 Materials and methods

2.1 Sampling

Bulk atmospheric deposition samples were regularly col-
lected at four high mountain European areas (Table 1)
over the same period: monthly between 2004 and 2006 in
Gossenköllesee (Tyrolean Alps), Redon (Central Pyrenees)
and Skalnate Pleso (Tatra Mountains) and biweekly between
2004 and 2007 in Lochnagar (Grampian Mountains) (Fig. 1).
All lakes are located in remote areas under special protec-
tion. Lake Redon is situated within the Aigüestortes area
belonging to the Natura 2000 European network. Lochna-
gar is located within the Deeside and Lochnagar National
Scenic Area, which define protected landscapes in Scotland
in the same category as national parks. Gossenköllesee and
its catchment area constituted one of the UNESCO Biosphere
Reserve from 1977 to 2014, while Skalnate Pleso is situated
in the area of the Tatra National Park. Meteorological param-
eters, i.e. air temperature and precipitation, were provided by
automatic weather stations (AWSs) located at each site ex-
cept in Skalnate Pleso where data were provided by the me-
teorological observatory of the Earth Science Institute of the
Slovak Academy of Science. In summer, precipitation was
collected with a polyethylene funnel (different diameter de-
pending on the sampling site) and connected to stainless steel
or Teflon-coated reservoirs by a tube. In winter, precipitation
occurs as snow and sampling was performed either with a
wider tube assembled to the top of a tank or with cylindrical
collectors. These devices were equipped with windscreens

around the collector’s mouth to prevent wind disturbance.
The samplers were placed 1.5 m above ground level. Sam-
ples were filtered on site using pre-weighed Whatman glass
fibre filters (GF/B, 45 mm diameter, 1 µm pore size) at each
field station and the filtrates were solid-phase-extracted with
C18 Empore disks (47 mm diameter, 0.5 mm thickness) as
described elsewhere (Carrera et al., 1998). After sample re-
moval, the bulk collectors were rinsed with Milli-Q water,
which was filtered and solid-phase-extracted with the same
disk used for the corresponding deposition sample. Glass fi-
bre filters and disks were wrapped in aluminium foil and
transported frozen to the laboratory. More details on sam-
pling procedures are reported elsewhere (Arellano et al.,
2015).

2.2 Extraction and clean-up

Glass-fibre filters were freeze-dried and weighed for mea-
suring total particle content in bulk atmospheric depo-
sition. PAHs were extracted from the filters by soni-
cation with dichloromethane:methanol (2 : 1) (3× 10 mL,
20 min each). The pollutants adsorbed in the C18 disks
were eluted sequentially with methanol, cyclohexane and
dichloromethane (Carrera et al., 1998). Both phases were
combined and purified by column adsorption chromatogra-
phy with aluminium oxide after adding a recovery standard
mixture of perdeuterated anthracene-d10, benz[a]anthracene-
d10, benzo[b]fluoranthene-d12 and benzo[ghi]perylene-d12
(Dr. Ehrenstorfer GmbH; Augsburg, Germany). Prior to in-
strumental analysis, samples were spiked with an internal
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Figure 1. Location of the high-altitude areas included in this study. Lake identification: LN is Lochnagar, RDN is Lake Redon, GKS is
Gossenköllesee and SKP is Skalnate Pleso. Situation of the Black Triangle between Germany, Poland and Czech Republic is indicated by a
shaded area.

standard mixture of pyrene-d10 and perylene-d12 dissolved
in isooctane.

2.3 Instrumental analysis

PAHs were analysed by gas chromatography–mass spec-
trometry (GC–MS; Trace DSQ II Instrument Thermo,
Austin, USA.) using a 60 m HP-5MS column (0.25 mm i.d.
×0.25 µm film thickness). The oven temperature programme
started at 90 ◦C (held for 1 min) and increased to 120 ◦C at
10 ◦C min−1, and then to 310 ◦C at 6 ◦C min−1 (final holding
time 25 min). Injector, transfer line and ion source temper-
atures were 280, 270 and 250 ◦C. Helium was used as the
carrier gas (1.2 mL min−1). The injector operated in splitless
mode. Data were acquired in electron impact and selective
ion monitoring modes. Further details on the ions selected
for quantification and mass spectrometric conditions are re-
ported elsewhere (Fernández et al., 1999).

2.4 Quality control and assurance

Quantification was performed by the internal standard
method. Recoveries of the analytical procedure were eval-
uated using surrogate standards. The reported values were
corrected by these recoveries, which varied between 76 % for
benz[a]anthracene-d10 and 53 % for benzo[ghi]perylene-d12.

Field and procedural blanks were collected at each sam-
pling site and processed together with the samples. For field
blanks, Milli-Q water was filtered and solid-phase adsorbed,
transported and stored for subsequent analysis. In general,
blank values represented less than 10 % of bulk deposition
sample concentrations. These values were used to determine
method detection limits (MDLs) that were established as av-
erage blank values plus 3 times the standard deviation. These
limits ranged between 0.45 and 28 pg depending on the com-
pound.

2.5 Back trajectory air mass calculations

Three-day back trajectories were calculated using the Hy-
brid Single-Particle Lagrangian Integrated Trajectory (HYS-
PLIT data available at http://ready.arl.noaa.gov/HYSPLIT.
php) modelling system developed by the National Oceanic
and Atmospheric Administration (NOAA) Air Resources
Laboratory (ARL) (Draxler and Hess, 1998; Draxler and
Rolph, 2013).

The meteorological data used to compute the 6-hourly
back trajectories were obtained from the National Centre
for Environmental Prediction (NECP) Global Data Assimi-
lation System (GDAS) and from Eta Data Assimilation Sys-
tem (EDAS). The trajectories were calculated for those days
with precipitation (rain or snow) and every 2 days when no
precipitation was recorded by the AWS.

Atmos. Chem. Phys., 18, 16081–16097, 2018 www.atmos-chem-phys.net/18/16081/2018/
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Table 2. Comparison of PAH deposition fluxes with those reported in the literature.

Sampling site Sampling period Site type
∑

15 PAH-EPA Benzo[a]pyrene Reference
(µg m−2 d−1) (ng m−2 month−1)

Skalnate Pleso May 2004–May 2006 remote 0.28 280 This study
Lochnagar Jun 2004–Mar 2007 remote 0.06 61 This study
Gossenköllesee Jun 2004–Aug 2006 remote 0.04 20 This study
Redon May 2004–Sep 2006 remote 0.02 51 This study
Gossenköllesee Oct 1996–Oct 1998 remote 0.038 22 Fernandez et al. (2003)
Redon Mar 1997–Oct 1998 remote 0.052 59 Fernandez et al. (2003)
Øvre Neadalsvatn Dec 1997, Apr–Aug 1998 remote 0.063 41 Fernandez et al. (2003)
Chesapeake Bay Jun 1990–Dec 1991 remote 0.55 500 Leister and Baker (1994)
Chesapeake Bay 1991 remote 0.4–0.55 500 Dickhut and Gustafson (1995)
Siskiwit Lake (Lake Superior, USA) 1983–1984 remote 0.46 225 McVeety and Hites (1988)
Natural Park (northern Spain) Jun 2010–May 2011 remote 0.18 Foan et al. (2012)
Southern Ontario (Canada) Oct 2001–Dec 2002 remote 0.41 345 Su et al. (2007)
Southern Italy Dec 2003–Jan 2004 rural 0.09 (0.07–0.15) 140 Menichini et al. (2006)
Southern Germany Aug 2001–Aug 2002 rural 0.55 Gocht et al. (2007)
Beijing–Tianjin region Jun 2007–May 2008 rural 3.9 Wang et al. (2011b)
Pleumeur-Bodou (France) Oct 1999–Oct 2000 rural 0.14 15 000 Garban et al. (2002)
Balaton Lake (Hungary) 1996–1997 rural 0.51–0.81 1000–1500 Kiss et al. (2001)
Abeschviller (France) Oct 1999–Oct 2000 forest 0.19 15 000 Garban et al. (2002)
Bayreuth (Germany) May 1995–Apr 1996 forest 0.42–2.4 620–1700 Horstmann and Mclachlan (1998)
Gardsjon (Sweden) 1991–1994 forest 0.51 Brorstrom-Lunden et al. (1998)
Western Mediterranean Sea 1989–1990 coastal 0.13 183 Lipiatou et al. (1997)
Eastern Mediterranean Nov 2000–Jul 2002 coastal 0.46 Tsapakis et al. (2006)
Atlantic Ocean (Canada) 1998–2000 coastal 0.12 25–75 Brun et al. (2004)
New England coast Dec 1998–May 2000 coastal 0.22 Golomb et al. (2001)
Galvesston Bay (Texas, USA) Feb 1995–Aug 1996 coastal 0.63 Park et al. (2001)
New Jersey Jun 1999–Aug 2002 coastal 1.0 1.6 Gigliotti et al. (2005)
New Jersey Feb 1998–Jan 2003 coastal 0.4–6.1 1.3–24 Gigliotti et al. (2005)
Tampa Bay May–Aug 2002 coastal 6.8 120 Poor et al. (2004)
Beijing–Tianjin region Jun 2007–May 2008 background 0.82 Wang et al. (2011b)
Western Greece Jan 2001–Oct 2002 background 0.19 Terzi and Samara (2005)
New Jersey Feb 1998–Aug 2002 suburban 0.81–3.1 1.7–12 Gigliotti et al. (2005)
Evreux (France) Mar 2001–Feb 2002 suburban 0.13 Motelay-Massei et al. (2003)
Yangsuri, Yangpyoung Feb–May 2000 suburban 5.5–24 Bae et al. (2002)
Taichung (Taiwan) Aug–Dec 2002 suburban 39 Fang et al. (2004)
Izmit Bay (Turkey) Sep 2002–Jul 2003 urban 8.3 1500 Pekey et al. (2007)
Manchester 1991–1992 urban 5.2 9000 Halsall et al. (1997)
Cardiff 1991–1992 urban 4.1 6600 Halsall et al. (1997)
Taichung (Taiwan) Aug–Dec 2002 urban 49 Fang et al. (2004)
Beijing–Tianjin region Jun 2007–May 2008 urban 8.3 Wang et al. (2011b)
Paris Oct 1999–Oct 2000 urban 0.63 Garban et al. (2002)
Paris (France) Nov 1999–Oct 2000 urban 0.64 (0.2–2.0) Ollivon et al. (2002)
Seoul and Inchon Feb–May 2000 urban 5.5–24 Bae et al. (2002)
New Jersey Feb 1998–Aug 2002 urban 11–16 42–54 Gigliotti et al. (2005)
Bursa (Turkey) Jul 2004–Mar 2005 industrial 0.3–19.5 Esen et al. (2008)

Different altitudes were used to calculate the trajectories.
Usually, they did not show differences; thus altitudes repre-
senting the air mass above the sampling point were selected
at 3000 m above sea level (a.s.l.) in Redon and Skalnate
Pleso, 3500 m a.s.l. for Gossenköllesee and 2000 m a.s.l. for
Lochnagar. The total number of backward trajectories was
1968, being 335, 475, 598 and 560 for Redon, Gossenkölle-
see, Lochnagar and Skalnate Pleso. More details on air
mass trajectory determination can be found in Arellano et
al. (2014).

3 Results and discussion

3.1 Atmospheric PAH deposition fluxes. Spatial and
temporal variability

Mean, minimum and maximum atmospheric deposition
fluxes of the PAHs at the four sampling sites during the stud-
ied period are summarised in Table 1. A strong contrast is
found between the total PAH mean fluxes found in Lochna-
gar, Gossenköllesse and Redon of 0.80–2.1 µg m−2 month−1,
and in Skalnate Pleso of 9.7 µg m−2 month−1, the latter
showing PAH deposition fluxes between 5 and 10 times
higher than the others. In Table 2, these deposition fluxes
are compared with those observed in different environments,
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e.g. remote, rural, coastal, industrial, suburban and urban ar-
eas. In addition, the deposition fluxes of benzo[a]pyrene are
also included in this Table for comparison. This hydrocar-
bon is a known carcinogen taken for reference in regula-
tory pollution values of PAH concentrations. As observed
for total PAHs, the benzo[a]pyrene mean deposition fluxes in
Skalnate Pleso, 280 ng m−2 month−1, are much higher than
those observed in Lochnagar, Gossenköllesee and Redon,
20–61 ng m−2 month−1 (Table 2).

The observed PAH deposition fluxes in these high moun-
tain European areas, 0.02–0.28 µg m−2 d−1, range among
the lowest values reported in the literature (Table 2). Thus,
PAH deposition fluxes of 0.40–0.55 µg m−2 d−1 have been
recorded at remote sites from the USA (Su et al., 2007;
McVeety and Hites, 1988; Leister and Baker, 1994; Dickhut
and Gustafsson, 1995), whereas Foan et al. (2012) reported
mean deposition fluxes of PAHs of 0.18 µg m−2 d−1 in re-
mote areas of northern Spain. The reported PAH depositions
in background areas are again higher than those observed
in the high mountain European sites, 0.19–0.82 µg m−2 d−1

(Brorstrom-Lunden et al., 1998; Horstmann and McLach-
lan, 1998; Garban et al., 2002). Higher PAH deposition has
also been measured in rural areas, 0.09–3.9 µg m−2 d−1 (Kiss
et al., 2001; Garban et al., 2002; Menichini et al., 2006;
Gocht et al., 2007; Wang et al., 2011b) or in coastal sites,
0.4–6.8 µg m−2 d−1 (Lipiatou et al., 1997; Golomb et al.,
2001; Park et al., 2001; Brun et al., 2004; Poor et al., 2004;
Gigliotti et al., 2005; Tsapakis et al., 2006). As expected,
the PAH deposition fluxes measured in industrial areas, 0.3–
19.5 µg m−2 d−1 (Esen et al., 2008), in suburban areas, 0.13–
39 µg m−2 d−1 (Bae et al., 2002; Motelay-Massei et al., 2003;
Fang et al., 2004; Gigliotti et al., 2005), and in urban areas
0.63–49 µg m−2 d−1 (Halsall et al., 1997; Bae et al., 2002;
Garban et al., 2002; Ollivon et al., 2002; Fang et al., 2004;
Gigliotti et al., 2005; Pekey et al., 2007; Wang et al., 2011b),
are higher than those in the remote European mountains.

Concerning the benzo[a]pyrene deposition fluxes, again
those observed in the European high mountains, 20–
280 ng m−2 month−1, range among the lowest described (Ta-
ble 2). However, the values reported for different types
of sites do not show uniform trends such as those ob-
served when considering total PAH deposition. Thus,
benzo[a]pyrene deposition fluxes ranged between 225 and
500 ng m−2 month−1 in remote sites (Su et al., 2007;
McVeety and Hites, 1988; Leister and Baker, 1994; Foan et
al., 2012). In forested and rural areas, the benzo[a]pyrene
deposition has been measured to account between 140
and 15 000 ng m−2 month−1 (Horstmann and McLachan,
1998; Garban et al., 2002; Kiss et al., 2001; Menichini
et al., 2006). Finally, benzo[a]pyrene fluxes between 42
and 9000 ng m−2 month−1 have been reported in urban sites
(Halsall et al., 1997; Gigliotti et al., 2005; Pekey et al., 2007).

The differences between Lochnagar, Gossenköllesee, and
Redon, and separately at Skalnate Pleso cannot be explained
by differences in precipitation (e.g. 120 mm month−1 in

Skalnate Pleso and 66–129 mm month−1 in the other sites)
(Table 1) or particle flux (330 mg m−2 month−1 in Skalnate
Pleso and 145–320 mg m−2 month−1 in the other lakes) (Ta-
ble 1). The higher PAH deposition in Skalnate Pleso com-
pared to the other sites is in agreement with atmospheric PAH
concentrations and probably reflects regional contributions
from industrial emissions by factories located in southern
Poland and other areas such as the Black Triangle (Fig. 1)
(van Drooge et al., 2010). This geographical difference is
consistent with PAH concentrations reported in air on a Eu-
ropean scale, which identified high PAH emissions in eastern
Europe (Jaward et al., 2004).

Comparison of the PAH deposition measured in
Gossenköllesee and Redon in 2004–2006 with those found
in 1996–1998 (Fernandez et al., 2003) shows nearly the same
values at Gossenköllesee (Table 2) but statistically signifi-
cant differences in Redon (p>0.05), involving lower fluxes
in the 2004–2006 period. In both cases, the deposition fluxes
range among the lowest measured in remote sites (Table 2),
which suggest that they correspond to background concen-
trations of long-range-transported PAHs and not to direct
pollution inputs. A very similar deposition of total particles
has been measured in Gossenköllesee in the two sampling
periods, 145 mg m−2 month−1 in 4 June–6 August (Table 1)
and 130 mg m−2 month−1 in October 1996–October 1998
(Fernandez et al., 2003), whereas total precipitation shows
a strong difference, with lower values in 2004–2006 of
66 mm month−1 (Table 1) vs. 110 mm month−1 (Fernandez
et al., 2003) in the 1996–1998 period. Precipitation in
the recent period is quite low, suggesting that the PAH
fallout fluxes at Gossenköllesee were mainly determined by
particle deposition. By contrast, in Redon both decreases
in particle deposition of 320 mg m−2 month−1 (Table 1)
from 420 mg m−2 month−1 (Fernandez et al., 2003) and
atmospheric precipitation of 79 mm month−1 (Table 1) from
110 mm month−1 (Fernandez et al., 2003) are observed
when comparing the recent (4 May–6 September) and
previous sampling periods (March 1997–October 1998).
The differences in the deposition of particles and wet
precipitation are consistent with the lower PAH fallout from
the atmosphere observed at this site in 2004–2006.

3.2 PAH composition

Overall, the PAH composition in the atmospheric depo-
sition samples was dominated by parent compounds and,
among these, the low molecular weight fraction (LMW-
PAHs, from acenaphthene to pyrene). Phenanthrene, fluoran-
thene and pyrene were the most abundant, representing be-
tween 32 % and 60 % of the total PAH mixture (Fig. 2). These
compounds are also the most abundant in the atmosphere,
namely in the gas phase (Fernández et al., 2002). Dominance
of LMW-PAHs in atmospheric deposition and, particularly,
phenanthrene, fluoranthene and pyrene, is a common feature
of studies in Europe (Halsall et al., 1997; Holoubek et al.,
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Figure 2. Qualitative distribution of PAH mixtures in atmospheric deposition samples. Compound identification: Acnphlene
is acenaphthylene, Acnphtene is acenaphthene, Flu is fluorene, Phe is phenanthrene, Ant is anthracene, Fla is fluoranthene,
Acephe is acephenanthrilene, Pyr is pyrene, B[a]A is benz[a]anthracene, Chrys+Triph is chrysene+ triphenilene, B[b+ j]Fla is
benzo[b]fluoranthene+ benzo[j]fluoranthene, B[k]Fla, benzo[k]fluoranthene, B[e]P is benzo[e]pyrene, B[a]P is benzo[a]pyrene, Per is
perylene, IndChrys is indeno[7,1,2,3-cdef]chrysene, IndPyr is indeno[1,2,3-cd]pyrene, B[ghi]Per is benzo[ghi]perylene, DB[ah]A is
dibenz[a,h]anthracene, Cor is coronene.

Table 3. Average PAH isomeric ratios in atmospheric deposition.

Pyr / (Fla+Pyr) BaA / (BaA+Chrys) BaP / (BaP+BeP)

Gossenköllesee

Mean 0.40± 0.03 0.18± 0.04 0.38± 0.10
Warma 0.41± 0.04 0.19± 0.04 0.31± 0.13
Coldb 0.39± 0.02 0.17± 0.04 0.39± 0.06

Redon

Mean 0.43± 0.02 0.17± 0.04 0.42± 0.05
Warm 0.42± 0.02 0.18± 0.03 0.41± 0.05
Cold 0.43± 0.02 0.17± 0.05 0.43± 0.05

Skalnate Pleso

Mean 0.40± 0.02 0.28± 0.07 0.45± 0.12
Warm 0.41± 0.01 0.22± 0.04 0.51± 0.18
Cold 0.40± 0.02 0.32± 0.05 0.42± 0.07

Lochnagar

Mean 0.41± 0.06 0.31± 0.06 0.33± 0.12
Warm 0.42± 0.08 0.32± 0.06 0.36± 0.10
Cold 0.40± 0.04 0.30± 0.06 0.31± 0.11

a June–October, b November–May.

2007; Fernández et al., 2003; Cetin et al., 2016), America
(Gigliotti et al., 2005; Brun et al., 2004) and Asia (Li et al.,
2009; Wang et al., 2011b; Sharma et al., 2018).

In the present study, no significant differences in quali-
tative composition between sites were observed, except for
the relative proportion of phenanthrene, the most volatile
and abundant compound. The PAH distributions from the
sites with lower annual mean temperature, Gossenköllesee
and Skalnate Pleso at−1.4 and 2.2 ◦C respectively (Table 1),

were those with highest proportion of this compound (31 %–
32 %), whereas the lowest was observed in Redon (12 %,
5.3 ◦C). Lochnagar (4.9 ◦C) also showed a low but intermedi-
ate proportion of phenanthrene (18 %). Higher local temper-
atures likely involve lower condensation of the most volatile
PAHs and therefore lower deposition fluxes.

Consistently with these differences in phenanthrene con-
tent, the coldest sites, Gossenköllesee and Skalnate Pleso,
were those with the highest deposition of low and high
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molecular weight PAHs, of 0.89 and 0.40 µg m−2 month−1

and 5.6 and 3.9 µg m−2 month−1 (Table 1), whereas
this proportion was inverse in Redon, with 0.30 and
0.49 µg m−2 month−1, and about the same in Lochnagar,
with 1.1 and 0.97 µg m−2 month−1 (Table 1).

Further assessment on the qualitative changes in PAH
composition between samples can be obtained from the
study of diagnostic ratios (Table 3; Sicre et al., 1987).
The pyrene / (fluoranthene+ pyrene) ratios showed a
uniform composition between samples and therefore no
environmental dependence. In contrast, the sites located
at lower altitude, e.g. Lochnagar (790 m) and Skalnate
(1787 m) were those with a higher relative proportion
of benz[a]anthracene to its less labile to photooxida-
tion isomer, chrysene (Ding et al., 2007; Xing et al.,
2016). The lower-altitude sites receive less insolation than
those located at higher altitude. Accordingly, the aver-
age benz[a]anthracene / (chrysene+ benz[a]anthracene)
ratios were higher in Skalnate (1787 m a.s.l.) and
Lochnagar (790 m a.s.l.), between 0.28 and 0.31,
than in Gossenköllesee (2413 m a.s.l.) and Redon
(2230 m a.s.l.), 0.17–0.18 (Table 3). Furthermore, the
average benz[a]anthracene / (chrysene+ benz[a]anthracene)
ratio in Skalnate Pleso (0.28; 1787 m) was even lower than
the one in Lochnagar (0.31; 790 m). Thus, insolation and
not local temperature was the main driver of the relative
changes between benz[a]anthracene and chrysene in all
sites. Differentiation between the cold (November–May)
and the warm (June–October) sampling periods, involving
higher insolation in the latter, did not show significant
differences in this ratio in Gossenköllesee, Redon and
Lochnagar (Table 3). However, in Skalnate Pleso higher
benz[a]anthracene / (chrysene+ benz[a]anthracene) ratio
was observed in the cold season (Table 3), which confirmed
a predominant insolation effect in the relative concentrations
of these two PAHs.

The average benzo[a]pyrene / (benzo[e]pyrene +

benzo[a]pyrene) ratios found in Gossenköllesee, Redon
and Skalnate Pleso were also consistent with insolation
differences, since the proportion of benzo[a]pyrene, the
compound more labile to photooxidation, was higher at the
lower-altitude sampling sites, at 0.38, 0.42 and 0.45 (Ta-
ble 3). However, this trend was not observed in Lochnagar,
the lowest-altitude site, which showed the lowest average
benzo[a]pyrene / (benzo[e]pyrene+ benzo[a]pyrene) ra-
tio. In general, the benzo[a]pyrene / (benzo[e]pyrene +
benzo[a]pyrene) ratio is less sensitive to photooxidation than
the benz[a]anthracene / (chrysene + benz[a]anthracene)
ratio (Behymer and Hites, 1988).

3.3 Meteorological drivers of PAH atmospheric
deposition

The influence of particle deposition, precipitation and tem-
perature on PAH fallout fluxes at these remote sites was in-

vestigated. Pearson correlation coefficients between the log-
transformed PAH monthly deposition fluxes and these vari-
ables were calculated at each site. The statistically signifi-
cant correlations found at 95 % (p<0.05) and 99 % (p<0.01)
confidence levels are shown in Table 4.

In Redon and Lochnagar, the two sites receiving highest
precipitation, the fallout fluxes of most of these hydrocar-
bons were directly correlated to wet deposition, e.g. higher
precipitation involving higher PAH fallout. At these two
sites, no significant correlations were observed between PAH
fluxes and particle deposition or temperature. Normalisation
of PAH fallout to particle deposition also showed significant
positive correlations with precipitation (p<0.01), which cor-
roborated the dominant role of rain and snow in the transfer
of PAHs from the atmosphere to the soil. These results are
also consistent with reports indicating that particle scaveng-
ing processes are significant mechanisms of PAH removal
from the atmosphere (Gocht et al., 2007; Li et al., 2016).

In Gossenköllesee, the site receiving lowest precipitation,
66 mm month−1 (Table 1), PAH fallout was significantly cor-
related to particle deposition for the higher molecular weight
PAHs (p<0.05; Table 4) and no correlation was observed
between PAH fluxes and precipitation. Normalisation of the
PAH fluxes to particle deposition showed significant negative
correlations with precipitation for some compounds in the
low molecular weight range, e.g. fluoranthene, pyrene and
chrysene (p<0.05; Table 4). The particle-normalised depo-
sition flows of these compounds were also negatively corre-
lated to temperature. Lower temperatures enhance the PAH
transfer from gas phase to particles and this effect is stronger
among the PAHs of higher volatility, such as fluoranthene,
pyrene and chrysene. This association with the particulate
matter increases the deposition of these compounds.

Previous studies considering the gas-particle partitioning
of these compounds in Gossenköllesee, Redon and Skalnate
Pleso showed that the observed distributions in Gossenkölle-
see and Skalnate more closely followed the theoretical
slope constants of the correlations between gas-phase par-
tition coefficients and octanol–air constants (Fernandez et
al., 2002; van Drooge et al., 2010), which was consistent
with a temperature-dependent reversible transfer between
gas phase and particle adsorption. Moreover, the significant
negative correlations of the particle-normalised deposition
fluxes of these compounds in Gossenköllesee with precipi-
tation may be explained by the significant positive correla-
tion between precipitation and temperature at this site. Ac-
cordingly, in the cold period lower precipitation and higher
particle-normalised PAH deposition were observed.

Skalnate Pleso has some specific features since this lo-
cation receives enhanced PAH inputs from regional emis-
sions. These emissions involve the release of large amounts
of particulate matter containing PAHs (van Drooge et al.,
2010). This site received the highest particle deposition
flux, 330 µg m−2 month−1 (Table 1), and PAH fallout was
significantly correlated with particle deposition (p<0.05;
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Table 4). Some PAHs, e.g. benzo[a]pyrene (R2
= 0.585),

benzo[ghi]perylene (R2
= 0.516 at p<0.001) and coronene

(R2
= 0.561), also showed significant negative correlations

with temperature (p<0.05; Table 4), which may reflect the
effects of higher winter production of electric power or other
combustion processes in the region. These results are consis-
tent with previous studies in urban and rural areas (Schif-
man and Boving, 2015; Birgul et al., 2011; Gaga et al.,
2009; Gocht et al., 2007; Brun et al., 2004; Shahpoury et al.,
2015), which also found higher PAH fluxes in winter. The
observed seasonal trend in Skalnate Pleso could reflect direct
impacts of regional sources, while Redon, Lochnagar and
Gossenköllesee received PAH mixtures from more distant ar-
eas and no significant seasonal influences were recorded.

Normalisation of the PAH fallout to particle deposition
showed that precipitation is not a main driver of the transfer
of these hydrocarbons from atmosphere to soil in Skalnate
Pleso. However, temperature appeared as a significant pa-
rameter that was negatively correlated with PAH deposition
fluxes (p<0.05; Table 4). As in the case of Gossenköllesee,
these negative correlations may reflect the higher adsorption
of PAHs to particles at lower temperatures, involving higher
particle PAH content and therefore higher deposition fluxes
of these hydrocarbons. Lower temperatures enhance the ca-
pacity of settling particles for the transfer of PAHs from at-
mosphere to soil.

3.4 Correlation with air mass back trajectories

Determination of the PAH source regions for each site was
performed by 72 h backward trajectory analyses using the
HYSPLIT model for the entire sampling periods (Table 1).
A detailed description of the back trajectory analyses per-
formed in each study site is reported elsewhere (Arellano
et al., 2014). Air mass back trajectories and their contribu-
tions to the total trajectories measured in each sampling pe-
riod were assigned to each monthly deposition sample. The
number of trajectories calculated in each sampling site is in-
dicated in Table 5.

The relationship between air mass trajectories and PAH
deposition was investigated for each sample. No trend was
observed at Lochnagar, indicating diffuse PAH inputs from
unspecific sources in this site.

In Skalnate Pleso, a negative dependence between particle-
normalised PAH fluxes and air masses from the south was
observed, which may indicate that particles from this origin
were depleted in PAH content (Table 5).

In Gossenköllesee, total particle mass was negatively cor-
related with air masses from the North Atlantic (Table 5).
These air masses were also negatively correlated with to-
tal PAHs, including LMW-PAHs and HMW-PAHs (from
benzo[a]anthracene to coronene) (Table 5), which is consis-
tent with the predominant role of particle deposition at this
site (Table 4). Normalisation of PAH fallout to particle de-

Atmos. Chem. Phys., 18, 16081–16097, 2018 www.atmos-chem-phys.net/18/16081/2018/



L. Arellano et al.: Drivers of atmospheric deposition 16091

Table 6. Comparison between atmospheric deposition and lacustrine sediment fluxes of PAHs in the study regions (µg m−2 yr−1).

Lochnagar Redon Gossenköllesee Skalnate Plesoa

Atmospheric deposition

Sampling period Jun 2004–Mar 2007 May 2004–Sep 2006 Jun 2004–Aug 2006 May 2004–May 2006∑
PAH 25 9.6 16 120

Sediment fluxes

Sampling year 2001 1991 1998 1991 2001
Sampling site Lochnagar Redón Gossenköllesee Starolenianske Pleso Ladove Pleso
Catchment area (ha) 109 155 85 3.2 14.4
Lake area (ha) 10.4 24 1.7 0.71 1.7∑

PAH concentration (ng g−1 dw) 4000 680 780 18 000 8700∑
PAH total fluxes 480 120 125 3000 1400∑
PAH total fluxes (estimated)b 260 62 780 452 850∑
PAH ratio (measured / calculated)c 0.54 0.52 6.2 0.18 0.73

a Sediment data from Skalnate Pleso were not available. Sedimentation rates from two nearby lakes in the Tatra Mountains are shown for comparison. b Calculated considering that all atmospheric
inputs in the lake and its catchment area accumulate in the lake sediments (atmospheric deposition× catchment area)/lake area. c Ratio between measured sediment fluxes and those calculated from
the atmospheric deposition considering the lake and its catchment area.

Figure 3. Prevalent back trajectories in Redon from 1 to
29 June 2006, mainly originating from southern areas.

position showed a positive correlation with air masses from
central and eastern Europe (Table 5).

The two main air mass trajectories arriving at Redon are
clearly different in terms of meteorological characteristics
and PAH deposition fluxes. As reported elsewhere, back-
wards air mass trajectories in Redon showed a well-defined
seasonal pattern (Arellano et al., 2014). Southern trajecto-
ries were dominant during the warm season (June–October;
59 %; see Fig. 3 as an example), while North Atlantic trajec-
tories prevailed during cold periods (November–May; 48 %).
The central and eastern European trajectories identified in
this site were less frequent and did not show any seasonal
trend.

Southern air masses in this site are characterised by high
temperature and particle content (positive correlation with
T and particle deposition flows, Table 5), which is consis-
tent with Saharan dust inputs and the well-known geograph-
ical characteristics of the northern African regions. In this
case, a significant negative association was observed between
particle-normalised PAH flows and air masses from this ori-
gin, mainly for the LMW-PAHs (Table 5), which may re-
spond to both a gas-phase–aerosol displacement towards the
former and a low PAH content of the Saharan dust in compar-
ison to the PAH concentrations in particles from other areas.
Despite this, the overall result is an increase in PAH loads to
Redon during the warm periods due to the high amount of
particles arriving at this site in spring–summer (Table 1). Air
masses originating from the North Atlantic involved higher
precipitation and lower particle content (significant positive
and negative correlation with these variables respectively).
Particle-normalised PAH fallout was positively correlated
with air masses of this origin (Table 5), which was consis-
tent with the dependence of PAH deposition on precipitation
at this site (Table 4), likely enhanced by gas phase-aerosol
partitioning of PAHs at low temperatures and increased scav-
enging efficiency of snow compared to rain (Fernandez et al.,
2002; Arellano et al., 2011). Finally, air masses from central
and eastern Europe are negatively correlated with PAH depo-
sition fluxes, mainly for HMW-PAHs (Table 5). Air masses
from this origin were therefore not significant for PAH fall-
out.

3.5 Atmospheric PAH deposition and lacustrine
sedimentary fluxes

The atmospheric deposition samplers are located close
to high mountain lakes. Previous studies of sediment
cores in these lakes allowed the average PAH sediment
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fluxes to be determined in the top cores from Redon
and Gossenköllesee, 120 and 125 µg m−2 yr−1 respec-
tively (Fernandez et al., 1999). The sedimentation flux in
Lochnagar was calculated from the PAH concentrations
(4000 ng g−1 dw; data not published) using a sedimentation
rate of 0.012 g cm−2 yr−1 (Rose, 2001), which resulted in a
PAH flux of 480 µg m−2 yr−1. No lake sediment was avail-
able for Skalnate Pleso. Therefore, PAH fluxes from two
nearby lakes in the Tatra Mountains were considered, e.g.
Starolesnianske Pleso with 3000 µg m−2 yr−1 (Fernandez et
al., 1999) and Ladove Pleso with 1400 µg m−2 yr−1 (Drooge
et al., 2011).

Comparison of the PAH atmospheric deposition and lacus-
trine sedimentary fluxes showed much higher values in sed-
iments, i.e. 24–100 and 120–3000 µg m−2 yr−1 respectively
(Table 6). All lakes considered in this comparison are lo-
cated in high mountain areas and their hydrological regime
is determined by atmospheric precipitation into the water-
shed. The strong difference in flux values of the direct PAH
atmospheric and sedimentary measurements may respond to
processes such as the sediment focusing (Rowan et al., 1995)
or lake sediment concentration of these hydrocarbons falling
into the surface of the lake catchment. Studies at low alti-
tude (seawater) have reported that air–water exchange is the
most important process for low molecular weight PAH inputs
into aquatic systems, exceeding the wet and dry deposition
(Tsapakis et al., 2006; Ruge et al., 2015). In these high moun-
tain lakes, the average concentrations of volatile PAHs are
lower than in low-altitude aquatic systems, e.g. air and water
concentrations of phenanthrene 0.99 ng m−3 (Fernandez et
al., 2003; van Drooge et al., 2010) and 180 ng m−3 (Vilanova
et al., 2001) respectively vs. 3.3–16 and 450–5600 ng m−3 in
marine systems (Gigliotti et al., 2002; Tsapakis et al., 2006).
The smaller concentrations in high mountains should involve
lower gas–water transfer gradients (Nelson et al., 1998). Ir-
respective of these values, flux calculations in some of these
high mountain lakes for compounds with properties similar
to those of PAH showed that the main transfer essentially oc-
curs from water to air (Meijer et al., 2009). The overall mass
balance involved pollutant incorporation into the lake waters
due to atmospheric precipitation and a substantial degassing
to the atmosphere. Thus, in these lakes the air–water transfer
processes cannot explain the higher sedimentation fluxes in
comparison to atmospheric precipitation.

Regarding the contributions of PAH inputs from the wa-
tershed, an estimated sediment flux was calculated consid-
ering that the total amount of atmospheric PAHs deposited
in the lake and its catchment area were accumulated in the
lake sediments (Table 6). Interestingly, in the case of Lochna-
gar, Redon and Ladove, the ratio between calculated and
measured sediment fluxes varied between 0.5 and 0.7. This
consistency between atmospheric and sedimentary PAHs in
high-altitude areas situated in different areas of Europe is re-
markable, taking into account that it has been considered that
sediment area equals lake area, and confirms the predominant

 

Figure 4. Average PAH sediment and atmospheric deposition
fluxes at the high-altitude lakes considered in this study. Units in
µg m−2 yr−1.

atmospheric PAH origin in all studied sites. In Gossenkölle-
see, calculated sediment fluxes are 6-fold higher than mea-
sured values, which indicates that a small fraction of the
PAHs deposited in the lake watershed accumulate in the sur-
face sediments. On the contrary, calculated sediment fluxes
in Starolesnianske Pleso are 1 order of magnitude lower
than measured fluxes. The difference between Ladove and
Starolesnianske Pleso, both situated in the same region could
be related to orographic and hydrological characteristics of
the latter that enhanced the PAH inputs and accumulation
in Staroleniasnke Pleso sediments. This would explain the
high concentration of PAHs found in this site in comparison
with other lakes from the same area (Fernández et al., 1999,
2000). Another possibility for these differences could be re-
lated to a decrease in PAH atmospheric concentrations in
this region during the last decades. Atmospheric deposition
fluxes were measured between 2004 and 2006, whereas sed-
imentary fluxes correspond to 2001 in Ladove, but 10 years
before in the case of Starolesnianske Pleso (1991).

Representation of the PAH sedimentary settling fluxes and
average atmospheric deposition from each high mountain site
showed a strong significant correlation (R2

= 0.99; p<0.01;
Fig. 4). The standardised residual of this correlation fulfilled
the normality conditions according to the Shapiro–Wilk test.
Representation of the same data set excluding the area of
highest PAH deposition, High Tatras, also showed a strong
correlation (R2

= 0.86; p<0.20) but in this case there was
no statistical significance given the small statistical freedom
resulting from the number of cases considered. In any case,
the values of both data sets (Table 6) followed parallel distri-
butions.
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4 Summary and conclusions

The PAH and benzo[a]pyrene deposition fluxes recorded
in the studied high mountain areas of Europe (790–
2413 m) range among the lowest described in remote,
rural, coastal, suburban, urban or industrial areas. Nev-
ertheless, a strong contrast is observed between the
PAH deposition fluxes in Lochnagar, Gossenköllesee and
Redon, 0.80–2.1 µg m−2 month−1, and Skalnate Pleso,
9.7 µg m−2 month−1, the latter showing PAH deposition
fluxes between 5 and 10 times higher than the others, likely
as a consequence of inputs from southern Poland and other
areas.

Low molecular weight compounds from acenaphthene to
pyrene dominate the atmospheric deposition of PAHs, with
phenanthrene, fluoranthene and pyrene representing 32 %–
60 % of the total. The proportion of phenanthrene, the most
abundant compound in the PAH distribution of each sample
was higher at the sites of lower temperature, Gossenköllesee
and Skalnate Pleso, indicating higher transfer from gas phase
to particles of the more volatile PAHs.

Insolation was another local property determining the
deposited PAH distributions. The sites with lower insola-
tion, e.g. those located at lower altitude, were those with
a higher proportion of photooxidable compounds such as
benz[a]anthracene.

Precipitation was the main driver of PAH fallout. However,
when rain and snow deposition were low, particle settling
also constituted an efficient driver for PAH deposition. Ac-
cordingly, in Redon and Lochnagar, the two sites receiving
background long-range transported PAHs and highest precip-
itation, the fallout PAH fluxes were related to precipitation.
Whereas no significant association was observed between
long-range backward air trajectories and PAH deposition in
Lochnagar, enhanced PAH fallout at higher precipitation es-
sentially occurred for air masses originating from the North
Atlantic in Redon. In these cases, particle-normalised PAH
fallout was also associated with higher precipitation as these
air masses were concurrent with lower temperatures, which
enhanced gas to particle partitioning transfer. In the warm
season (June–October), most of the air masses arriving at
Redon originated from the south and particle deposition was
enhanced as a consequence of Saharan inputs. In these cases,
particle settling was also a driver of PAH deposition despite
the low overall PAH content of the Saharan particles.

In Gossenköllesee, the site receiving lowest precipitation,
PAH fallout was related to particle deposition, namely in the
case of higher molecular weight homologues. No correlation
was observed with precipitation and PAH deposition. How-
ever, the particle-normalised PAH deposition fluxes were sig-
nificantly negatively correlated to temperature according to
the transfer of these compounds from gas phase to particles
at lower temperatures, which enhanced PAH fallout, mainly
for the most volatile hydrocarbons. These dependences were
observed to occur when air masses originated from central

and eastern Europe. Lower deposition of total particles and
PAHs were observed in this site for air masses originating
from the north.

Comparison of PAH atmospheric deposition and lacustrine
sedimentary fluxes showed much higher values for the latter,
24–100 µg m−2 yr−1 compared with 120–3000 µg m−2 yr−1

respectively. However, the representation of the PAH set-
tling fluxes and average atmospheric deposition at each site
showed a strong significant correlation. Moreover, estimated
sediment fluxes calculated from the PAH atmospheric depo-
sition measured in each site, taking into account inputs from
the lake catchment, showed slightly lower values than mea-
sured fluxes, which indicates that the PAHs accumulated in
the lacustrine sediments of high mountains reflect the atmo-
spheric fallout of these hydrocarbons.
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