1,569 research outputs found

    Kinetic Anomalies in Addition-Aggregation Processes

    Full text link
    We investigate irreversible aggregation in which monomer-monomer, monomer-cluster, and cluster-cluster reactions occur with constant but distinct rates K_{MM}, K_{MC}, and K_{CC}, respectively. The dynamics crucially depends on the ratio gamma=K_{CC}/K_{MC} and secondarily on epsilon=K_{MM}/K_{MC}. For epsilon=0 and gamma<2, there is conventional scaling in the long-time limit, with a single mass scale that grows linearly in time. For gamma >= 2, there is unusual behavior in which the concentration of clusters of mass k, c_k decays as a stretched exponential in time within a boundary layer k<k* propto t^{1-2/gamma} (k* propto ln t for gamma=2), while c_k propto t^{-2} in the bulk region k>k*. When epsilon>0, analogous behaviors emerge for gamma<2 and gamma >= 2.Comment: 6 pages, 2 column revtex4 format, for submission to J. Phys.

    Nontrivial Polydispersity Exponents in Aggregation Models

    Full text link
    We consider the scaling solutions of Smoluchowski's equation of irreversible aggregation, for a non gelling collision kernel. The scaling mass distribution f(s) diverges as s^{-tau} when s->0. tau is non trivial and could, until now, only be computed by numerical simulations. We develop here new general methods to obtain exact bounds and good approximations of τ\tau. For the specific kernel KdD(x,y)=(x^{1/D}+y^{1/D})^d, describing a mean-field model of particles moving in d dimensions and aggregating with conservation of ``mass'' s=R^D (R is the particle radius), perturbative and nonperturbative expansions are derived. For a general kernel, we find exact inequalities for tau and develop a variational approximation which is used to carry out the first systematic study of tau(d,D) for KdD. The agreement is excellent both with the expansions we derived and with existing numerical values. Finally, we discuss a possible application to 2d decaying turbulence.Comment: 16 pages (multicol.sty), 6 eps figures (uses epsfig), Minor corrections. Notations improved, as published in Phys. Rev. E 55, 546

    Phase diagram of the quarter-filled extended Hubbard model on a two-leg ladder

    Full text link
    We investigate the ground-state phase diagram of the quarter-filled Hubbard ladder with nearest-neighbor Coulomb repulsion V using the Density Matrix Renormalization Group technique. The ground-state is homogeneous at small V, a ``checkerboard'' charge--ordered insulator at large V and not too small on-site Coulomb repulsion U, and is phase-separated for moderate or large V and small U. The zero-temperature transition between the homogeneous and the charge-ordered phase is found to be second order. In both the homogeneous and the charge-ordered phases the existence of a spin gap mainly depends on the ratio of interchain to intrachain hopping. In the second part of the paper, we construct an effective Hamiltonian for the spin degrees of freedom in the strong-coupling charge-ordered regime which maps the system onto a frustrated spin chain. The opening of a spin gap is thus connected with spontaneous dimerization.Comment: 12 pages, 13 figures, submitted to PRB, presentation revised, new results added (metallic phase at small U and V

    Scaling Theory for Migration-Driven Aggregate Growth

    Full text link
    We give a comprehensive rate equation description for the irreversible growth of aggregates by migration from small to large aggregates. For a homogeneous rate K(i;j) at which monomers migrate from aggregates of size i to those of size j, that is, K(ai;aj) ~ a^{lambda} K(i,j), the mean aggregate size grows with time as t^{1/(2-lambda)} for lambda<2. The aggregate size distribution exhibits distinct regimes of behavior which are controlled by the scaling properties of the migration rate from the smallest to the largest aggregates. Our theory applies to diverse phenomena, such as the distribution of city populations, late stage coarsening of non-symmetric binary systems, and models for wealth exchange.Comment: 4 pages, 2-column revtex format. Revision to appear in PRL. Various changes in response to referee comments. Figure from version 1 deleted but is available at http://physics.bu.edu/~redne

    Know What You Stream: Generating Event Streams from CPN Models in ProM 6

    Get PDF
    Abstract. The field of process mining is concerned with supporting the analysis, improvement and understanding of business processes. A range of promising techniques have been proposed for process mining tasks such as process discovery and conformance checking. However there are challenges, originally stemming from the area of data mining, that have not been investigated extensively in context of process mining. In particular the incorporation of data stream mining techniques w.r.t. process mining has received little attention. In this paper, we present new developments that build on top of previous work related to the integration of data streams within the process mining framework ProM. We have developed means to use Coloured Petri Net (CPN) models as a basis for eventstream generation. The newly introduced functionality greatly enhances the use of event-streams in context of process mining as it allows us to be actively aware of the originating model of the event-stream under analysis

    Cardiovascular-renal axis disorders in the domestic dog and cat: a veterinary consensus statement

    Get PDF
    OBJECTIVES There is a growing understanding of the complexity of interplay between renal and cardiovascular systems in both health and disease. The medical profession has adopted the term "cardiorenal syndrome" (CRS) to describe the pathophysiological relationship between the kidney and heart in disease. CRS has yet to be formally defined and described by the veterinary profession and its existence and importance in dogs and cats warrant investigation. The CRS Consensus Group, comprising nine veterinary cardiologists and seven nephrologists from Europe and North America, sought to achieve consensus around the definition, pathophysiology, diagnosis and management of dogs and cats with "cardiovascular-renal disorders" (CvRD). To this end, the Delphi formal methodology for defining/building consensus and defining guidelines was utilised. METHODS Following a literature review, 13 candidate statements regarding CvRD in dogs and cats were tested for consensus, using a modified Delphi method. As a new area of interest, well-designed studies, specific to CRS/CvRD, are lacking, particularly in dogs and cats. Hence, while scientific justification of all the recommendations was sought and used when available, recommendations were largely reliant on theory, expert opinion, small clinical studies and extrapolation from data derived from other species. RESULTS Of the 13 statements, 11 achieved consensus and 2 did not. The modified Delphi approach worked well to achieve consensus in an objective manner and to develop initial guidelines for CvRD. DISCUSSION The resultant manuscript describes consensus statements for the definition, classification, diagnosis and management strategies for veterinary patients with CvRD, with an emphasis on the pathological interplay between the two organ systems. By formulating consensus statements regarding CvRD in veterinary medicine, the authors hope to stimulate interest in and advancement of the understanding and management of CvRD in dogs and cats. The use of a formalised method for consensus and guideline development should be considered for other topics in veterinary medicine

    A Survey of Numerical Solutions to the Coagulation Equation

    Full text link
    We present the results of a systematic survey of numerical solutions to the coagulation equation for a rate coefficient of the form A_ij \propto (i^mu j^nu + i^nu j^mu) and monodisperse initial conditions. The results confirm that there are three classes of rate coefficients with qualitatively different solutions. For nu \leq 1 and lambda = mu + nu \leq 1, the numerical solution evolves in an orderly fashion and tends toward a self-similar solution at large time t. The properties of the numerical solution in the scaling limit agree with the analytic predictions of van Dongen and Ernst. In particular, for the subset with mu > 0 and lambda < 1, we disagree with Krivitsky and find that the scaling function approaches the analytically predicted power-law behavior at small mass, but in a damped oscillatory fashion that was not known previously. For nu \leq 1 and lambda > 1, the numerical solution tends toward a self-similar solution as t approaches a finite time t_0. The mass spectrum n_k develops at t_0 a power-law tail n_k \propto k^{-tau} at large mass that violates mass conservation, and runaway growth/gelation is expected to start at t_crit = t_0 in the limit the initial number of particles n_0 -> \infty. The exponent tau is in general less than the analytic prediction (lambda + 3)/2, and t_0 = K/[(lambda - 1) n_0 A_11] with K = 1--2 if lambda > 1.1. For nu > 1, the behaviors of the numerical solution are similar to those found in a previous paper by us. They strongly suggest that there are no self-consistent solutions at any time and that runaway growth is instantaneous in the limit n_0 -> \infty. They also indicate that the time t_crit for the onset of runaway growth decreases slowly toward zero with increasing n_0.Comment: 41 pages, including 14 figures; accepted for publication in J. Phys.

    Simultaneous nitrification and phosphate removal by bioaugmented aerobic granules treating a fluoroorganic compound

    Get PDF
    Funding Information: This work was financed by FCT under the project AGeNT – PTDC/BTA-BTA/31264/2017 (POCI-01-0145-FEDER-031264). The authors would like to thank the scientific collaboration of CBQF under the FCT project UIDB/ 50016/2020. Publisher Copyright: © 2021 The AuthorsThe presence of toxic compounds in wastewater can cause problems for organic matter and nutrient removal. In this study, the long-term effect of a model xenobiotic, 2-fluorophenol (2-FP), on ammonia-oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and phosphate accumulating organisms (PAO) in aerobic granular sludge was investigated. Phosphate (P) and ammonium (N) removal efficiencies were high (>93%) and, after bioaugmentation with 2-FP degrading strain FP1, 2-FP was completely degraded. Neither N nor P removal were affected by 50 mg L1 of 2-FP in the feed stream. Changes in the aerobic granule bacterial communities were followed. Numerical analysis of the denaturing gradient gel electrophoresis (DGGE) profiles showed low diversity for the ammonia monooxygenase (amoA) gene with an even distribution of species. PAOs, including denitrifying PAO (dPAO), and AOB were present in the 2-FP degrading granules, although dPAO population decreased throughout the 444 days reactor operation. The results demonstrated that the aerobic granules bioaugmented with FP1 strain successfully removed N, P and 2-FP simultaneously.publishersversionpublishe

    Charge-order transition in the extended Hubbard model on a two-leg ladder

    Full text link
    We investigate the charge-order transition at zero temperature in a two-leg Hubbard ladder with additional nearest-neighbor Coulomb repulsion V using the Density Matrix Renormalization Group technique. We consider electron densities between quarter and half filling. For quarter filling and U=8t, we find evidence for a continuous phase transition between a homogeneous state at small V and a broken-symmetry state with "checkerboard" [wavevector Q=(pi,pi)] charge order at large V. This transition to a checkerboard charge-ordered state remains present at all larger fillings, but becomes discontinuous at sufficiently large filling. We discuss the influence of U/t on the transition and estimate the position of the tricritical points.Comment: 4 pages, 5 figs, minor changes, accepted for publication in PRB R
    corecore