research

Scaling Theory for Migration-Driven Aggregate Growth

Abstract

We give a comprehensive rate equation description for the irreversible growth of aggregates by migration from small to large aggregates. For a homogeneous rate K(i;j) at which monomers migrate from aggregates of size i to those of size j, that is, K(ai;aj) ~ a^{lambda} K(i,j), the mean aggregate size grows with time as t^{1/(2-lambda)} for lambda<2. The aggregate size distribution exhibits distinct regimes of behavior which are controlled by the scaling properties of the migration rate from the smallest to the largest aggregates. Our theory applies to diverse phenomena, such as the distribution of city populations, late stage coarsening of non-symmetric binary systems, and models for wealth exchange.Comment: 4 pages, 2-column revtex format. Revision to appear in PRL. Various changes in response to referee comments. Figure from version 1 deleted but is available at http://physics.bu.edu/~redne

    Similar works

    Full text

    thumbnail-image

    Available Versions