199 research outputs found

    PID Comes Full Circle: Applications of V(D)J Recombination Excision Circles in Research, Diagnostics and Newborn Screening of Primary Immunodeficiency Disorders

    Get PDF
    The vast majority of patients suffering from a primary immunodeficiency (PID) have defects in their T- and/or B-cell compartments. Despite advances in molecular diagnostics, in many patients no underlying genetic defect has been identified. B- and T-lymphocytes are unique in their ability to create a receptor by genomic rearrangement of their antigen receptor genes via V(D)J recombination. During this process, stable circular excision products are formed that do not replicate when the cell proliferates. Excision circles can be reliably quantified using real-time quantitative (RQ-)PCR techniques. Frequently occurring δREC–ψJα T-cell receptor excision circles (TRECs) have been used to assess thymic output and intronRSS–Kde recombination excision circles (KREC) to quantify B-cell replication history. In this perspective, we describe how TRECs and KRECs are formed during precursor – T- and B-cell differentiation, respectively. Furthermore, we discuss new insights obtained with TRECs and KRECs and specifically how these excision circles can be applied to support therapy monitoring, patient classification and newborn screening of PID

    Autoantibody subclass predominance is not driven by aberrant class switching or impaired B cell development

    Get PDF
    A subset of autoimmune diseases is characterized by predominant pathogenic IgG4 autoantibodies (IgG4-AID). Why IgG4 predominates in these disorders is unknown. We hypothesized that dysregulated B cell maturation or aberrant class switching causes overrepresentation of IgG4+ B cells and plasma cells. Therefore, we compared the B cell compartment of patients from four different IgG4-AID with two IgG1-3-AID and healthy donors, using flow cytometry. Relative subset abundance at all maturation stages was normal, except for a, possibly treatment-related, reduction in immature and naïve CD5+ cells. IgG4+ B cell and plasma cell numbers were normal in IgG4-AID patients, however they had a (sub)class-independent 8-fold increase in circulating CD20-CD138+ cells. No autoreactivity was found in this subset. These results argue against aberrant B cell development and rather suggest the autoantibody subclass predominance to be antigen-driven. The similarities between IgG4-AID suggest that, despite displaying variable clinical phenotypes, they share a similar underlying immune profile.</p

    Pitfalls in TCR gene clonality testing: teaching cases

    Get PDF
    Clonality testing in T-lymphoproliferations has technically become relatively easy to perform in routine laboratories using standardized multiplex polymerase chain reaction protocols for T-cell receptor (TCR) gene analysis as developed by the BIOMED-2 Concerted Action BMH4-CT98-3936. Expertise with clonality diagnostics and knowledge about the biology of TCR gene recombination are essential for correct interpretation of TCR clonality data. Several immunobiological and technical pitfalls that should be taken into account to avoid misinterpretation of data are addressed in this report. Furthermore, we discuss the need to integrate the molecular data with those from immunohistology, and preferably also flow cytometric immunophenotyping, for appropriate interpretation. Such an interactive, multidisciplinary diagnostic model guarantees integration of available data to reach the most reliable diagnosis

    The EuroFlow PID Orientation Tube for Flow Cytometric Diagnostic Screening of Primary Immunodeficiencies of the Lymphoid System

    Get PDF
    In the rapidly evolving field of primary immunodeficiencies (PID), the EuroFlow consortium decided to develop a PID orientation and screening tube that facilitates fast, standardized, and validated immunophenotypic diagnosis of lymphoid PID, and allows full exchange of data between centers. Our aim was to develop a tool that would be universal for all lymphoid PIDs and offer high sensitivity to identify a lymphoid PID (without a need for specificity to diagnose particular PID) and to guide and prioritize further diagnostic modalities and clinical management. The tube composition has been defined in a stepwise manner through several cycles of design-testing-evaluation-redesign in a multicenter setting. Equally important appeared to be the standardized pre-analytical procedures (sample preparation and instrument setup), analytical procedures (immunostaining and data acquisition), the software analysis (a multidimensional view based on a reference database in Infinicyt software), and data interpretation. This standardized EuroFlow concept has been tested on 250 healthy controls and 99 PID patients with defined genetic defects. In addition, an application of new EuroFlow software tools with multidimensional pattern recognition was designed with inclusion of maturation pathways in multidimensional patterns (APS plots). The major advantage of the EuroFlow approach is that data can be fully exchanged between different laboratories in any country of the world, which is especially of interest for the PID field, with generally low numbers of cases per center

    Optimization and testing of dried antibody tube: The EuroFlow LST and PIDOT tubes as examples

    Get PDF
    Within EuroFlow, we recently developed screening tubes for hematological malignancies and immune deficiencies. Pipetting of antibodies for such 8-color 12-marker tubes however is time-consuming and prone to operational mistakes. We therefore evaluated dried formats of the lymphocytosis screening tube (LST) and of the primary immune deficiency orientation tube (PIDOT). Both tubes were evaluated on normal and/or on patient samples, comparing the mean fluorescence intensity of specific lymphocyte populations. Our data show that the dried tubes and liquid counterparts give highly comparable staining results, particularly when analyzed in multidimensional plots. In addition, the use of dried tubes may result in a reduced staining variability between different samples and thereby contributes to the generation of more robust data. Therefore, by using ready-to-use reagents in a dried single test tube format, the laboratory efficiency and quality will be improved

    EuroFlow Lymphoid Screening Tube (LST) data base for automated identification of blood lymphocyte subsets

    Get PDF
    In recent years the volume and complexity of flow cytometry data has increased substantially. This has led to a greater number of identifiable cell populations in a single measurement. Consequently, new gating strategies and new approaches for cell population definition are required. Here we describe how the EuroFlow Lymphoid Screening Tube (LST) reference data base for peripheral blood (PB) samples was designed, constructed and validated for automated gating of the distinct lymphoid (and myeloid) subsets in PB of patients with chronic lymphoproliferative disorders (CLPD). A total of 46 healthy/reactive PB samples which fulfilled predefined technical requirements, were used to construct the LST-PB reference data base. In addition, another set of 92 PB samples (corresponding to 10 healthy subjects, 51 B-cell CLPD and 31 T/NK-cell CLPD patients), were used to validate the automated gating and cell-population labeling tools with the Infinicyt software. An overall high performance of the LST-PB data base was observed with a median percentage of alarmed cellular events of 0.8% in 10 healthy donor samples and of 44.4% in CLPD data files containing 49.8% (range: 1.3–96%) tumor cells. The higher percent of alarmed cellular events in every CLPD sample was due to aberrant phenotypes (75.6% cases) and/or to abnormally increased cell counts (86.6% samples). All 18 (22%) data files that only displayed numerical alterations, corresponded to T/NK-cell CLPD cases which showed a lower incidence of aberrant phenotypes (41%) vs B-cell CLPD cases (100%). Comparison between automated vs expert-bases manual classification of normal (r2 = 0.96) and tumor cell populations (rho = 0.99) showed a high degree of correlation. In summary, our results show that automated gating of cell populations based on the EuroFlow LST-PB data base provides an innovative, reliable and reproducible tool for fast and simplified identification of normal vs pathological B and T/NK lymphocytes in PB of CLPD patients

    Comparing the cumulative live birth rate of cleavage-stage versus blastocyst-stage embryo transfers between IVF cycles:a study protocol for a multicentre randomised controlled superiority trial (the ToF trial)

    Get PDF
    Introduction In vitro fertilisation (IVF) has evolved as an intervention of choice to help couples with infertility to conceive. In the last decade, a strategy change in the day of embryo transfer has been developed. Many IVF centres choose nowadays to transfer at later stages of embryo development, for example, transferring embryos at blastocyst stage instead of cleavage stage. However, it still is not known which embryo transfer policy in IVF is more efficient in terms of cumulative live birth rate (cLBR), following a fresh and the subsequent frozen-thawed transfers after one oocyte retrieval. Furthermore, studies reporting on obstetric and neonatal outcomes from both transfer policies are limited. Methods and analysis We have set up a multicentre randomised superiority trial in the Netherlands, named the Three or Fivetrial. We plan to include 1200 women with an indication for IVF with at least four embryos available on day 2 after the oocyte retrieval. Women are randomly allocated to either (1) control group: embryo transfer on day 3 and cryopreservation of supernumerary good-quality embryos on day 3 or 4, or (2) intervention group: embryo transfer on day 5 and cryopreservation of supernumerary good-quality embryos on day 5 or 6. The primary outcome is the cLBR per oocyte retrieval. Secondary outcomes include LBR following fresh transfer, multiple pregnancy rate and time until pregnancy leading a live birth. We will also assess the obstetric and neonatal outcomes, costs and patients' treatment burden. Ethics and dissemination The study protocol has been approved by the Central Committee on Research involving Human Subjects in the Netherlands in June 2018 (CCMO NL 64060.000.18). The results of this trial will be submitted for publication in international peer-reviewed and in open access journals. Trial registration number Netherlands Trial Register (NL 6857)

    Patient specific real-time PCR in precision medicine – Validation of IG/TR based MRD assessment in lymphoid leukemia

    Get PDF
    Detection of patient- and tumor-specific clonally rearranged immune receptor genes using real-time quantitative (RQ)-PCR is an accepted method in the field of precision medicine for hematologic malignancies. As individual primers are needed for each patient and leukemic clone, establishing performance specifications for the method faces unique challenges. Results for series of diagnostic assays for CLL and ALL patients demonstrate that the analytic performance of the method is not dependent on patients’ disease characteristics. The calibration range is linear between 10-1 and 10-5 for 90% of all assays. The detection limit of the current standardized approach is between 1.8 and 4.8 cells among 100,000 leukocytes. RQ-PCR has about 90% overall agreement to flow cytometry and next generation sequencing as orthogonal methods. Accuracy and precision across different labs, and above and below the clinically applied cutoffs for minimal/measurable residual disease (MRD) demonstrate the robustness of the technique. The here reported comprehensive, IVD-guided analytical validation provides evidence that the personalized diagnostic methodology generates robust, reproducible and specific MRD data when standardized protocols for data generation and evaluation are used. Our approach may also serve as a guiding example of how to accomplish analytical validation of personalized in-house diagnostics under the European IVD Regulation

    Age-associated distribution of normal B-cell and plasma cell subsets in peripheral blood

    Get PDF
    Background: Humoral immunocompetence develops stepwise throughout life and contributes to individual susceptibility to infection, immunodeficiency, autoimmunity, and neoplasia. Immunoglobulin heavy chain (IgH) isotype serum levels can partly explain such age-related differences, but their relationship with the IgH isotype distribution within memory B-cell (MBC) and plasma cell (PCs) compartments remains to be investigated. Objective: We studied the age-related distribution of MBCs and PCs expressing different IgH isotypes in addition to the immature/transitional and naive B-cell compartments. Methods: B-cell and PC subsets and plasma IgH isotype levels were studied in cord blood (n = 19) and peripheral blood (n = 215) from healthy donors aged 0 to 90 years by using flow cytometry and nephelometry, respectively. Results: IgH-switched MBCs expressing IgG1, IgG2, IgG3, IgA1, and IgA2 were already detected in cord blood and newborns at very low counts, whereas CD27+IgM++IgD+ MBCs only became detectable at 1 to 5 months and remained stable until 2 to 4 years, and IgD MBCs peaked at 2 to 4 years, with both populations decreasing thereafter. MBCs expressing IgH isotypes of the second immunoglobulin heavy chain constant region (IGHC) gene block (IgG1, IgG3, and IgA1) peaked later during childhood (2-4 years), whereas MBCs expressing third IGHC gene block immunoglobulin isotypes (IgG2, IgG4, and IgA2) reached maximum values during adulthood. PCs were already detected in newborns, increasing in number until 6 to 11 months for IgM, IgG1, IgG2, IgG3, IgA1, and IgA2; until 2 to 4 years for IgD; and until 5 to 9 years for IgG4 and decreasing thereafter. For most IgH isotypes (except IgD and IgG4), maximum plasma levels were reached after PC and MBC counts peaked. Conclusions: PC counts reach maximum values early in life, followed by MBC counts and plasma IgH isotypes. Importantly, IgH isotypes from different IGHC gene blocks show different patterns, probably reflecting consecutive cycles of IgH isotype switch recombination through life
    corecore