8 research outputs found

    Transfer of maternal antibodies against avian influenza virus in mallards (Anas platyrhynchos)

    Full text link
    Maternal antibodies protect chicks from infection with pathogens early in life and may impact pathogen dynamics due to the alteration of the proportion of susceptible individuals in a population. We investigated the transfer of maternal antibodies against avian influenza virus (AIV) in a key AIV host species, the mallard (Anas platyrhynchos). Combining observations in both the field and in mallards kept in captivity, we connected maternal AIV antibody concentrations in eggs to (i) female body condition, (ii) female AIV antibody concentration, (iii) egg laying order, (iv) egg size and (v) embryo sex. We applied maternity analysis to the eggs collected in the field to account for intraspecific nest parasitism, which is reportedly high in Anseriformes, detecting parasitic eggs in one out of eight clutches. AIV antibody prevalence in free-living and captive females was respectively 48% and 56%, with 43% and 24% of the eggs receiving these antibodies maternally. In both field and captive study, maternal AIV antibody concentrations in egg yolk correlated positively with circulating AIV antibody concentrations in females. In the captive study, yolk AIV antibody concentrations correlated positively with egg laying order. Female body mass and egg size from the field and captive study, and embryos sex from the field study were not associated with maternal AIV antibody concentrations in eggs. Our study indicates that maternal AIV antibody transfer may potentially play an important role in shaping AIV infection dynamics in mallards

    Migratory birds reinforce local circulation of avian influenza viruses

    Get PDF
    Migratory and resident hosts have been hypothesized to fulfil distinct roles in infectious disease dynamics. However, the contribution of resident and migratory hosts to wildlife infectious disease epidemiology, including that of low pathogenic avian influenza virus (LPAIV) in wild birds, has largely remained unstudied. During an autumn H3 LPAIV epizootic in free-living mallards (Anas platyrhynchos) - a partially migratory species - we identified resident and migratory host populations using stable hydrogen isotope analysis of flight feathers. We investigated the role of migratory and resident hosts separately in the introduction and maintenance of H3 LPAIV during the epizootic. To test this we analysed (i) H3 virus kinship, (ii) temporal patterns in H3 virus prevalence and shedding and (iii) H3-specific antibody prevalence in relation to host migratory strategy. We demonstrate that the H3 LPAIV strain causing the epizootic most likely originated from a single introduction, followed by local clonal expansion. The H3 LPAIV strain was genetically unrelated to H3 LPAIV detected both before and after the epizootic at the study site. During the LPAIV epizootic, migratory mallards were more often infected with H3 LPAIV than residents. Low titres of H3-specific antibodies were detected in only a few residents and migrants. Our results suggest that in this LPAIV epizootic, a single H3 virus was present in resident mallards prior to arrival of migratory mallards followed by a period of virus amplification, importantly associated with the influx of migratory mallards. Thus migrants are suggested to act as local amplifiers rather than the often suggested role as vectors importing novel strains from afar. Our study exemplifies that a multifaceted interdisciplinary approach offers promising opportunities to elucidate the role of migratory and resident hosts in infectious disease dynamics in wildlife

    Herd immunity drives the epidemic fadeout of avian cholera in Arctic-nesting seabirds

    Get PDF
    Avian cholera, caused by the bacterium Pasteurella multocida, is a common and important infectious disease of wild birds in North America. Between 2005 and 2012, avian cholera caused annual mortality of widely varying magnitudes in Northern common eiders (Somateria mollissima borealis) breeding at the largest colony in the Canadian Arctic, Mitivik Island, Nunavut. Although herd immunity, in which a large proportion of the population acquires immunity to the disease, has been suggested to play a role in epidemic fadeout, immunological studies exploring this hypothesis have been missing. We investigated the role of three potential drivers of fadeout of avian cholera in eiders, including immunity, prevalence of infection, and colony size. Each potential driver was examined in relation to the annual real-time reproductive number (Rt) of P. multocida, previously calculated for eiders at Mitivik Island. Each year, colony size was estimated and eiders were closely monitored, and evaluated for infection and serological status. We demonstrate that acquired immunity approximated using antibody titers to P. multocida in both sexes was likely a key driver for the epidemic fadeout. This study exemplifies the importance of herd immunity in influencing the dynamics and fadeout of epidemics in a wildlife population

    Ecological Immunology through the Lens of Exercise Immunology : New Perspective on the Links between Physical Activity and Immune Function and Disease Susceptibility in Wild Animals

    No full text
    Locomotion and other physical activities by free-living animals may influence immune function and disease susceptibility. This influence may be a consequence of energetic trade-offs or other mechanisms that are often, but not always, inseparably linked to an animal's life history (e.g., flight and migration). Ecological immunology has mainly focused on these life-history trade-offs, overlooking the possible effects of physical activity per se on immune function and disease susceptibility. In this review, we explore the field of exercise immunology, which examines the impact of exercise on immune function and disease susceptibility in humans, with the aim of presenting new perspectives that might be transferable to ecological immunology. First, we explore key concepts in exercise immunology that could be extended to animals. Next, we investigate the concept "exercise" in animals, and propose the use of "physical activity" instead. We briefly discuss methods used in animals to quantify physical activity in terms of energy expenditure and summarize several examples of animals engaging in physical activity. Then, we highlight potential consequences of physical activity on immune function and disease susceptibility in animals, together with an overview of animal studies that examine these links. Finally, we explore and discuss the potential for incorporating perspectives from exercise immunology into ecological immunology. Such integration could help advance our understanding of human and animal health and contribute new ideas to budding "One Health" initiatives.</p

    Ecological Immunology through the Lens of Exercise Immunology : New Perspective on the Links between Physical Activity and Immune Function and Disease Susceptibility in Wild Animals

    No full text
    Locomotion and other physical activities by free-living animals may influence immune function and disease susceptibility. This influence may be a consequence of energetic trade-offs or other mechanisms that are often, but not always, inseparably linked to an animal's life history (e.g., flight and migration). Ecological immunology has mainly focused on these life-history trade-offs, overlooking the possible effects of physical activity per se on immune function and disease susceptibility. In this review, we explore the field of exercise immunology, which examines the impact of exercise on immune function and disease susceptibility in humans, with the aim of presenting new perspectives that might be transferable to ecological immunology. First, we explore key concepts in exercise immunology that could be extended to animals. Next, we investigate the concept "exercise" in animals, and propose the use of "physical activity" instead. We briefly discuss methods used in animals to quantify physical activity in terms of energy expenditure and summarize several examples of animals engaging in physical activity. Then, we highlight potential consequences of physical activity on immune function and disease susceptibility in animals, together with an overview of animal studies that examine these links. Finally, we explore and discuss the potential for incorporating perspectives from exercise immunology into ecological immunology. Such integration could help advance our understanding of human and animal health and contribute new ideas to budding "One Health" initiatives.</p

    Maternal antibody transfer in free-living and captive mallards

    No full text
    From April until June 2010, free-living female mallards were caught from their nest in a woodland area in the Alblasserwaard, the Netherlands. Each captured female was marked with a metal ring, aged and several measurements were collected (tarsus length, head+bill length, wing length, body mass). Blood samples were collected for detection of antibodies to avian influenza virus (AIV). Per clutch two eggs were collected, of which the length and breadth was measured to assess egg volume. Egg yolks were separated to assess maternal antibodies to AIV, embryo size was measured and sex of embryos determined. In the same period, blood samples and several measurements (tarsus length, head+bill length, body mass) were collected from captured females in an outdoor aviary in Heteren, the Netherlands. Four eggs per clutch were collected (one per egg stage), of which the length and breadth was measured. Egg laying order was assessed. Egg yolks were separated and embryo size was measured. Serial dilution was applied to validate the use of OD-values of egg yolk and female serum as a quantitative estimate of antibody concentration

    Weak negative associations between avian influenza virus infection and movement behaviour in a key host species, the mallard Anas platyrhynchos

    Get PDF
    Animal movements may contribute to the spread of pathogens. In the case of avian influenza virus, [migratory] birds have been suggested to play a role in the spread of some highly pathogenic strains (e.g. H5N1, H5N8), as well as their low pathogenic precursors which circulate naturally in wild birds. For a better understanding of the emergence and spread of both highly pathogenic (HPAIV) and low pathogenic avian influenza virus (LPAIV), the potential effects of LPAIVs on bird movement need to be evaluated. In a key host species, the mallard Anas platyrhynchos, we tested whether LPAIV infection status affected daily local (&lt; 100 m) and regional (&gt; 100 m) movements by comparing movement behaviour 1) within individuals (captured and sampled at two time points) and 2) between individuals (captured and sampled at one time point). We fitted free-living adult males with GPS loggers throughout the autumn LPAIV infection peak, and sampled them for LPAIV infection at logger deployment and at logger removal on recapture. Within individuals, we found no association between LPAIV infection and daily local and regional movements. Among individuals, daily regional movements of LPAIV infected mallards in the last days of tracking were lower than those of non-infected birds. Moreover, these regional movements of LPAIV infected birds were additionally reduced by poor weather conditions (i.e. increased wind and/or precipitation and lower temperatures). Local movements of LPAIV infected birds in the first days of tracking were higher when temperature decreased. Our study thus demonstrates that bird-assisted dispersal rate of LPAIV may be lower on a regional scale than expected on the basis of the movement behaviour of non-infected birds. Our study underlines the importance of understanding the impact of pathogen infection on host movement in order to assess its potential role in the emergence and spread of infectious diseases

    Movement patterns of a keystone waterbird species are highly predictable from landscape configuration

    Get PDF
    Background: Movement behaviour is fundamental to the ecology of animals and their interactions with other organisms, and as such contributes to ecosystem dynamics. Waterfowl are key players in ecological processes in wetlands and surrounding habitats through predator-prey interactions and their transportation of nutrients and other organisms. Understanding the drivers of their movement behaviour is crucial to predict how environmental changes affect their role in ecosystem functioning. Mallards (Anas platyrhynchos) are the most abundant duck species worldwide and important dispersers of aquatic invertebrates, plants and pathogens like avian influenza viruses. By GPS tracking of 97 mallards in four landscape types along a gradient of wetland availability, we identified patterns in their daily movement behaviour and quantified potential effects of weather conditions and water availability on the spatial scale of their movements. Results: We demonstrate that mallard movement patterns were highly predictable, with regular commuting flights at dusk and dawn between a fixed day roost and one or several fixed nocturnal foraging sites, linked strongly to surface water. Wind and precipitation hardly affected movement, but flight distances and home range sizes increased when temperatures dropped towards zero. Flight distances and home range sizes increased exponentially with decreasing availability of freshwater habitat. Total shoreline length and the number of water bodies in the landscape surrounding the roost were the best predictors of the spatial scale of daily mallard movements. Conclusions: Our results show how mallards may flexibly adjust the spatial scale of their movements to wetland availability in the landscape. This implies that mallards moving between discrete habitat patches continue to preserve biotic connectivity in increasingly fragmented landscapes. The high predictability of mallard movement behaviour in relation to landscape features makes them reliable dispersal vectors for organisms to adapt to, and allows prediction of their ecological role in other landscapes
    corecore