111 research outputs found

    Time-resolved yield stress measurement of evolving materials using a creeping sphere

    Get PDF
    Physicochemical phenomena influenced by aging or reaction can result in rheological changes across several orders of magnitude, but the classical rheometry methods available for analysis of concentrated suspensions can face challenges in correctly measuring the yield stress of aging/reacting (evolving) materials and need some precautions to enable precise measurement of the evolution of the yield stress with time. Here, a creeping sphere method has been applied to measure time-resolved yield stress; the force required to pull a solid sphere at very low velocity is used to calculate yield stress using previous analytical solutions for local flow of a creeping sphere in yield stress materials. The measured yield stress values agree well with the data recorded using vane-in-cup geometry for time-independent measurements using Carbopol gel. The creeping sphere is less affected by shear history because of the constantly changing shear region and therefore measures yield stress changes in evolving materials such as cement for a long time period in a single run, without altering ongoing structural network bond formation

    Water content modifies the structural development of sodium metasilicate-activated slag binders

    Get PDF
    The effect of modifying the water content of an alkali - activated slag binder was assessed, in terms of the kinetics of reaction and the structural development of the material. There is not a s ystematic correlation between the water content of the mix and the rate of reaction, indicating that there is an optimal value that favours dissolution of the slag and precipitation of reaction products. A h igher water content reduce d the crystallinity and density of the reaction products, especially at advanced age. Small changes in the water content can have a significant impact on the compressive strength development of alkali - silicate activated slag mortars, suggesting that when producing materials base d on alkali - activated binders , it is essential to carefully control the water content

    Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders

    Get PDF
    Multi-technique characterisation of sodium carbonate-activated blast furnace slag binders was conducted in order to determine the influence of the carbonate groups on the structural and chemical evolution of these materials. At early age (<4 days) there is a preferential reaction of Ca2+ with the CO3 2− from the activator, forming calcium carbonates and gaylussite, while the aluminosilicate component of the slag reacts separately with the sodium from the activator to form zeolite NaA. These phases do not give the high degree of cohesion necessary for development of high early mechanical strength, and the reaction is relatively gradual due to the slow dissolution of the slag under the moderate pH conditions introduced by the Na2CO3 as activator. Once the CO3 2− is exhausted, the activation reaction proceeds in similar way to an NaOH-activated slag binder, forming the typical binder phases calcium aluminium silicate hydrate and hydrotalcite, along with Ca-heulandite as a further (Ca,Al)-rich product. This is consistent with the significant gain in compressive strength and reduced porosity observed after 3 days of curing. The high mechanical strength and reduced permeability developed in these materials beyond 4 days of curing elucidate that Na2CO3-activated slag can develop desirable properties for use as a building material, although the slow early strength development is likely to be an issue in some applications. These results suggest that the inclusion of additions which could control the preferential consumption of Ca2+ by the CO3 2− might accelerate the reaction kinetics of Na2CO3-activated slag at early times of curing, enhancing the use of these materials in engineering applications

    Phase evolution of Na2O–Al2O3–SiO2–H2O gels in synthetic aluminosilicate binders

    Get PDF
    This study demonstrates the production of stoichiometrically controlled alkali-aluminosilicate gels (‘geopolymers’) via alkali-activation of high-purity synthetic amorphous aluminosilicate powders. This method provides for the first time a process by which the chemistry of aluminosilicate-based cementitious materials may be accurately simulated by pure synthetic systems, allowing elucidation of physicochemical phenomena controlling alkali-aluminosilicate gel formation which has until now been impeded by the inability to isolate and control key variables. Phase evolution and nanostructural development of these materials are examined using advanced characterisation techniques, including solid state MAS NMR spectroscopy probing 29Si, 27Al and 23Na nuclei. Gel stoichiometry and the reaction kinetics which control phase evolution are shown to be strongly dependent on the chemical composition of the reaction mix, while the main reaction product is a Na2O–Al2O3–SiO2–H2O type gel comprised of aluminium and silicon tetrahedra linked via oxygen bridges, with sodium taking on a charge balancing function. The alkali-aluminosilicate gels produced in this study constitute a chemically simplified model system which provides a novel research tool for the study of phase evolution and microstructural development in these systems. Novel insight of physicochemical phenomena governing geopolymer gel formation suggests that intricate control over time-dependent geopolymer physical properties can be attained through a careful precursor mix design. Chemical composition of the main N–A–S–H type gel reaction product as well as the reaction kinetics governing its formation are closely related to the Si/Al ratio of the precursor, with increased Al content leading to an increased rate of reaction and a decreased Si/Al ratio in the N–A–S–H type gel. This has significant implications for geopolymer mix design for industrial applications

    Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions

    Get PDF
    This paper addresses the effects of relative humidity (RH) and carbon dioxide (CO2) concentration on the rate and effects of accelerated carbonation in alkali-activated slag/metakaolin (MK) concretes. Strength and water absorption are used alongside phenolphthalein measurements to monitor carbonation, and the effects of drying at different RHs are particularly significant in controlling carbonation rates. Different trends in the carbonation rate as a function of MK content are observed when varying the CO2 concentration, further revealing that the carbonation rates of these materials under accelerated conditions are influenced strongly by the testing protocol. The standard phenolphthalein method for testing carbonation depth appears only to be capturing the change in alkalinity with pore solution carbonation, meaning that it does not correlate well with other performance parameters at high CO2 concentrations

    Structural evolution of synthetic alkali-activated CaO-MgO-Na2O-Al2O3-SiO2 materials is influenced by Mg content

    Get PDF
    Stoichiometrically controlled alkali-activated materials within the system CaO-MgO-Na2O-Al2O3-SiO2 are produced by alkali-activation of high-purity synthetic powders chemically comparable to the glass in ground granulated blast furnace slag, but without additional minor constituents. Mg content controls the formation of hydrotalcite-group and AFm-type phases, which in turn strongly affects C-(N)-A-S-H gel chemistry and nanostructure. Bulk Mg content and the Mg/Al ratio of hydrotalcite-group phases are strongly correlated. With sufficient Ca, increased bulk Mg promotes formation of low-Al C-(A)-S-H and portlandite, due to formation of hydrotalcite-group phases and a reduction in available Al. Hydrotalcite-group phase formation is linked to increased C-(N)-A-S-H gel polymerisation, decreased gel Al uptake and increased formation of the ‘third aluminate hydrate’. These findings highlight the importance of considering available chemical constituents rather than simply bulk composition, so that the desired binder structure for a particular application can be achieved

    Nanostructural characterization of geopolymers by advanced beamline techniques

    Get PDF
    This paper presents the outcomes of a series of beamline-based studies, the results of which are combined to provide a more detailed multiscale understanding of the structure and chemistry of geopolymer binders. The range of beamline-based characterization techniques which have been applied to the study of geopolymer binders is increasing rapidly; although no single technique can provide a holistic view of binder structure across all the length scales which are of importance in determining strength development and durability, the synergy achievable through the combination of multiple beamline techniques is leading to rapid advances in knowledge in this area. Studies based around beamline infrared and X-ray fluorescence microscopy, in situ and ex situ neutron pair distribution function analysis, and nano- and micro-tomography, are combined to provide an understanding of geopolymer gel chemistry, nano- and microstructure in two and three dimensions, and the influences of seeded nucleation and precursor chemistry in these key areas. The application of advanced characterization methods in recent years has brought the understanding of geopolymer chemistry from a point, not more than a decade ago, when the analysis of the detailed chemistry of the aluminosilicate binder gel was considered intractable due to its disordered (“X-ray amorphous”) nature, to the present day where the influence of key compositional parameters on nanostructure is well understood, and both gel structure and reaction kinetics can be manipulated through methods including seeding, temperature variation, and careful mix design. This paper therefore provides a review outlining the value of nanotechnology – and particularly nanostructural characterization – in the development and optimization of a new class of environmentally beneficial cements and concretes. Key engineering parameters, in particularly strength development and permeability, are determined at a nanostructural level, and so it is essential that gel structures can be analyzed and manipulated at this level; beamline-based characterization techniques are critical in providing the ability to achieve this goal

    The influence of rice husk ash addition on the properties of metakaolin-based geopolymers

    Get PDF
    This paper investigates the replacement of metakaolin (MK) with rice husk ash (RHA) in the production of alkali-activated binders or geopolymers. The influence of the RHA addition on compressive and flexural strength, as well as water absorption and apparent porosity were determined, in terms of the percentage of RHA in the mixture and molar ratios of the mixes. Fourier Transform Infrared (FTIR) spectroscopy and Energy Dispersive spectroscopy (EDS) were carried out to assess the changes in the microstructure of the geopolymer matrices with the RHA addition. Results have shown that RHA may be a supplementary precursor for geopolymers. The composition of the geopolymer matrices containing 0-40% RHA is very similar, which indicates that the additional Si provided by RHA is not incorporated to the geopolymer matrix. In addition, geopolymers with RHA content higher than 40% present a plastic behavior, characterized by extremely low strength and high deformation, which can be attributed to the formation of silica gel in formulations containing variable Si/Al ratio

    FACTORS INFLUENCING THE EFFICIENCY OF A CARBON-IN-PULP ADSORPTION CIRCUIT FOR THE RECOVERY OF GOLD FROM CYANIDED PULPS.

    No full text
    Material balance equations were given to describe the adsorption of gold cyanide on activated carbon in either batch or continuous counter-current CIP systems. Kinetic and equilibrium parameters estimated from batch tests were shown to predict the behaviour of a small scale continuous plant accurately. A parametric sensitivity analysis of this model was conducted in order to explain the factors which influence the efficiency of a CIP plant. Insufficient mixing, large diameters of the carbon particles, the presence of competitive adsorbates, high temperature and pH values, insufficient regeneration of the carbon, a deficiency of dissolved oxygen and the presence of insoluble organics and fine slime particles all act to increase the concentration of gold in the barren solution.Conference Pape

    The effect of gangue components on the reduction of manganosite by graphite: an isothermal kinetic study

    No full text
    Mixtures of manganosite (MnO), graphite and various gangue components were reacted isothermally under argon, and the loss in mass was recorded continuously. Manganosite reduced first to Mn5C2, which then reacted with the remaining manganosite to form metallic manganese. Additions of haematite (Fe2O3) revealed no significant effect on the reduction of MnO by graphite, while CaO, MgO and Al2O3 accelerated the reduction slightly. The reaction was enhanced significantly by additions of K2CO3. Silica (SiO2) retarded the reduction appreciably, possibly because of the formation of ÎČ-MnSiO3. The influence of these impurities on the Boudouard reaction was observed during the isothermal gasification of graphite in an atmosphere of CO2. © 1987.Articl
    • 

    corecore