225 research outputs found

    How Do Plants Defend Themselves From Root-Eating Creatures?

    Get PDF
    The belowground world is full of creatures that depend on plants as a food source. Belowground plant eaters, or herbivores, feed on roots and can cause considerable damage to plants. Roots are very important because they help plants take up water and nutrients from the soil. These are important resources that plants need for growth. To protect their roots, plants produce chemical defenses. The production of these defenses is costly because nutrients and energy used to make defenses cannot be used for growth or the production of flowers and seeds. Plants, therefore, must be efficient with their defenses. Scientists are very interested in understanding how plants defend themselves efficiently, because this can help us to develop more environmentally friendly ways of growing fruits and vegetables. In this article, we explain how plants defend themselves efficiently, and how plant defenses affect herbivores in the soil

    Tracing Hidden Herbivores: Time-Resolved Non-Invasive Analysis of Belowground Volatiles by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)

    Get PDF
    Root herbivores are notoriously difficult to study, as they feed hidden in the soil. However, root herbivores may be traced by analyzing specific volatile organic compounds (VOCs) that are produced by damaged roots. These VOCs not only support parasitoids in the localization of their host, but also may help scientists study belowground plant-herbivore interactions. Herbivore-induced VOCs are usually analyzed by gas-chromatography mass spectrometry (GC-MS), but with this off-line method, the gases of interest need to be preconcentrated, and destructive sampling is required to assess the level of damage to the roots. In contrast to this, proton-transfer-reaction mass spectrometry (PTR-MS) is a very sensitive on-line, non-invasive method. PTR-MS already has been successfully applied to analyze VOCs produced by aboveground (infested) plant parts. In this review, we provide a brief overview of PTR-MS and illustrate how this technology can be applied to detect specific root-herbivore induced VOCs from Brassica plants. We also specify the advantages and disadvantages of PTR-MS analyses and new technological developments to overcome their limitations

    Thrips Resistance Screening Is Coming of Age: Leaf Position and Ontogeny Are Important Determinants of Leaf-Based Resistance in Pepper

    Get PDF
    Capsicum is a genus containing important crop species, many of which severely suffer from thrips infestation. Thrips feeding damages leaves and fruits, and often results in virus infections. Only a few insecticides are still effective against thrips, underlining the importance of finding natural resistance in crops. Capsicum is a perennial plant which is usually cultivated for several months, during which time the fruits are harvested. From the young vegetative stage to the mature fruit bearing stage, the plants are at risk to thrips infestation. Constitutive resistance to thrips over the entire ontogenetic development is therefore a key trait for a more sustainable and successful cultivation of the hot and sweet pepper. In addition to ontogeny, leaf position can affect the level of thrips resistance. Pest resistance levels are known to differ between young and old leaves. To our knowledge, no studies have explicitly considered ontogeny and leaf position when screening for constitutive resistance to thrips in Capsicum. In this study we analyze whether ontogeny and leaf position affect leaf-based resistance to Frankliniella occidentalis and Thrips tabaci, in 40 Capsicum accessions, comprising five different species. Our results show that resistance to both thrips species in Capsicum varies with ontogenetic stage. This variation in resistance among ontogenetic stages was not consistent among the accessions. However, accessions with constitutive resistance in both the flowering and fruit ripening stage could be identified. In addition, we found that thrips resistance is overall similar at different leaf positions within the ontogenetic stage. This implies that resistance mechanisms, such as defense compounds, are constitutively present at sufficient levels on all leaf positions. Finally, we found that resistance to F. occidentalis and resistance to T. tabaci were not correlated. This indicates that leaf-based resistance in Capsicum is thrips species-specific. Because of the variation in resistance over ontogeny, identifying Capsicum accessions with resistance over their entire lifespan is challenging. For resistance screening, accounting for leaf position may be less of a concern. To identify the defense mechanisms responsible for thrips resistance, it is important to further analyze and compare resistant and susceptible accessions

    Infection patterns and fitness effects of Rickettsia and Sodalis symbionts in the green lacewing Chrysoperla carnea

    Get PDF
    Endosymbionts are widely distributed in insects and can strongly affect their host ecology. The common green lacewing (Chrysoperla carnea) is a neuropteran insect which is widely used in biological pest control. However, their endosymbionts and their interactions with their hosts have not been very well studied. Therefore, we screened for endosymbionts in natural and laboratory populations of Ch. carnea using diagnostic PCR amplicons. We found the endosymbiont Rickettsia to be very common in all screened natural and laboratory populations, while a hitherto uncharacterized Sodalis strain was found only in laboratory populations. By establishing lacewing lines with no, single or co-infections of Sodalis and Rickettsia, we found a high vertical transmission rate for both endosymbionts (>89%). However, we were only able to estimate these numbers for co-infected lacewings. Sodalis negatively affected the reproductive success in single and co-infected Ch. carnea, while Rickettsia showed no effect. We hypothesize that the fitness costs accrued by Sodalis infections might be more tolerable in the laboratory than in natural populations, as the latter are also prone to fluctuating environmental conditions and natural enemies. The economic and ecological importance of lacewings in biological pest control warrants a more profound understanding of its biology, which might be influenced by symbionts

    Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea)

    Get PDF
    Levels of plant secondary metabolites are not static and often change in relation to plant ontogeny. They also respond to abiotic and biotic changes in the environment, e.g., they often increase in response to biotic stress, such as herbivory. In contrast with short-lived annual plant species, especially those with growing periods of less than 2–3 months, investment in defensive compounds of vegetative tissues in biennial and perennial species may also vary over the course of an entire growing season. In garden experiments, we investigated the dynamics of secondary metabolites, i.e. glucosinolates (GSLs) in the perennial wild cabbage (Brassica oleracea), which was grown from seeds originating from three populations that differ in GSL chemistry. We compared temporal long-term dynamics of GSLs over the course of two growing seasons and short-term dynamics in response to herbivory by Pieris rapae caterpillars in a more controlled greenhouse experiment. Long-term dynamics differed for aliphatic GSLs (gradual increase from May to December) and indole GSLs (rapid increase until mid-summer after which concentrations decreased or stabilized). In spring, GSL levels in new shoots were similar to those found in the previous year. Short-term dynamics in response to herbivory primarily affected indole GSLs, which increased during the 2-week feeding period by P. rapae. Herbivore-induced changes in the concentrations of aliphatic GSLs were population-specific and their concentrations were found to increase in primarily one population only. We discuss our results considering the biology and ecology of wild cabbage

    Soil chemical legacies trigger species‐specific and context‐dependent root responses in later arriving plants

    Get PDF
    Abstract Soil legacies play an important role for the creation of priority effects. However, we still poorly understand to what extent the metabolome found in the soil solution of a plant community is conditioned by its species composition and whether soil chemical legacies affect subsequent species during assembly. To test these hypotheses, we collected soil solutions from forb or grass communities and evaluated how the metabolome of these soil solutions affected the growth, biomass allocation and functional traits of a forb ( Dianthus deltoides ) and a grass species ( Festuca rubra ). Results showed that the metabolomes found in the soil solutions of forb and grass communities differed in composition and chemical diversity. While soil chemical legacies did not have any effect on F . rubra , root foraging by D . deltoides decreased when plants received the soil solution from a grass or a forb community. Structural equation modelling showed that reduced soil exploration by D . deltoides arose via either a root growth‐dependent pathway (forb metabolome) or a root trait‐dependent pathway (grass metabolome). Reduced root foraging was not connected to a decrease in total N uptake. Our findings reveal that soil chemical legacies can create belowground priority effects by affecting root foraging in later arriving plants

    A high‐quality functional genome assembly of delia radicum L. (diptera: anthomyiidae) annotated from egg to adult

    Get PDF
    Abstract Belowground herbivores are overseen and underestimated, even though they can cause significant economic losses in agriculture. The cabbage root fly Delia radicum (Anthomyiidae) is a common pest in Brassica species, including agriculturally important crops, such as oilseed rape. The damage is caused by the larvae, which feed specifically on the taproots of Brassica plants until they pupate. The adults are aboveground‐living generalists feeding on pollen and nectar. Female flies are attracted by chemical cues in Brassica plants for oviposition. An assembled and annotated genome can elucidate which genetic mechanisms underlie the adaptation of D . radicum to its host plants and their specific chemical defences, in particular isothiocyanates. Therefore, we assembled, annotated and analysed the D . radicum genome using a combination of different next‐generation sequencing and bioinformatic approaches. We assembled a chromosome‐level D . radicum genome using PacBio and Hi‐C Illumina sequence data. Combining Canu and 3D‐DNA genome assembler, we constructed a 1.3 Gbp genome with an N50 of 242 Mbp and 6 pseudo‐chromosomes. To annotate the assembled D . radicum genome, we combined homology‐, transcriptome‐ and ab initio‐prediction approaches. In total, we annotated 13,618 genes that were predicted by at least two approaches. We analysed egg, larval, pupal and adult transcriptomes in relation to life‐stage specific molecular functions. This high‐quality annotated genome of D . radicum is a first step to understanding the genetic mechanisms underlying host plant adaptation. As such, it will be an important resource to find novel and sustainable approaches to reduce crop losses to these pests

    Tree species richness differentially affects the chemical composition of leaves, roots and root exudates in four subtropical tree species

    Get PDF
    Plants produce thousands of compounds, collectively called the metabolome, which mediate interactions with other organisms. The metabolome of an individual plant may change according to the number and nature of these interactions. We tested the hypothesis that tree diversity level affects the metabolome of four subtropical tree species in a biodiversity–ecosystem functioning experiment, BEF‐China. We postulated that the chemical diversity of leaves, roots and root exudates increases with tree diversity. We expected that the strength of this diversity effect differs among leaf, root and root exudates samples. Considering their role in plant competition, we expected to find the strongest effects in root exudates. Roots, root exudates and leaves of four tree species ( Cinnamomum camphora , Cyclobalanopsis glauca , Daphniphyllum oldhamii and Schima superba ) were sampled from selected plots in BEF‐China. The exudate metabolomes were normalized over their non‐purgeable organic carbon level. Multivariate analyses were applied to identify the effect of both neighbouring (local) trees and plot diversity on tree metabolomes. The species‐ and sample‐specific metabolites were assigned to major compound classes using the ClassyFire tool, whereas potential metabolites related to diversity effects were annotated manually. Individual tree species showed distinct leaf, root and root exudate metabolomes. The main compound class in leaves was the flavonoids, whereas carboxylic acids, prenol lipids and specific alkaloids were most prominent in root exudates and roots. Overall, plot diversity had a stronger effect on metabolome profiles than the local diversity. Leaf metabolomes responded more often to tree diversity level than exudates, whereas root metabolomes varied the least. We found no uniform or general pattern of alterations in metabolite richness or diversity in response to variation in tree diversity. The response differed among species and tissues. Synthesis . Classification of metabolites supported initial ecological interpretation of differences among species and organs. Particularly, the metabolomes of leaves and root exudates respond to differences in tree diversity. These responses were neither linear nor uniform and individual metabolites showed different dynamics. More controlled interaction experiments are needed to dissect the causes and consequences of the observed shifts in plant metabolomes
    • 

    corecore