670 research outputs found
Speaking of Music and the Counterpoint of Copyright: Addressing Legal Concerns in Making Oral History Available to the Public
Oral history provides society with voices and memories of people and communities experiencing events of the past first-hand. Such history is created through interviews; an interview, however, like any other type of intellectual property—once in a fixed form—is subject to copyright law. In order to make oral history available to the public, it is critically important that individuals generating and acquiring oral history materials clearly understand relevant aspects of copyright law. The varied nature of how one may create, use, and acquire oral history materials can present new, surprising, and sometimes baffling legal scenarios that challenge the experience of even the most skilled curators.
This iBrief presents and discusses two real-world scenarios that raise various issues related to oral history and copyright law. These scenarios were encountered by curators at Yale University’s Oral History of American Music archive (OHAM), the preeminent organization dedicated to the collection and preservation of recorded memoirs of the creative musicians of our time. The legal concerns raised and discussed throughout this iBrief may be familiar to other stewards of oral history materials and will be worthwhile for all archivists and their counsel to consider when reviewing their practices and policies
Identification and Removal of Noise Modes in Kepler Photometry
We present the Transiting Exoearth Robust Reduction Algorithm (TERRA) --- a
novel framework for identifying and removing instrumental noise in Kepler
photometry. We identify instrumental noise modes by finding common trends in a
large ensemble of light curves drawn from the entire Kepler field of view.
Strategically, these noise modes can be optimized to reveal transits having a
specified range of timescales. For Kepler target stars of low photometric
noise, TERRA produces ensemble-calibrated photometry having 33 ppm RMS scatter
in 12-hour bins, rendering individual transits of earth-size planets around
sun-like stars detectable as ~3 sigma signals.Comment: 18 pages, 7 figures, submitted to PAS
A Spitzer Spectrum of the Exoplanet HD 189733b
We report on the measurement of the 7.5-14.7 micron spectrum for the
transiting extrasolar giant planet HD 189733b using the Infrared Spectrograph
on the Spitzer Space Telescope. Though the observations comprise only 12 hours
of telescope time, the continuum is well measured and has a flux ranging from
0.6 mJy to 1.8 mJy over the wavelength range, or 0.49 +/- 0.02% of the flux of
the parent star. The variation in the measured fractional flux is very nearly
flat over the entire wavelength range and shows no indication of significant
absorption by water or methane, in contrast with the predictions of most
atmospheric models. Models with strong day/night differences appear to be
disfavored by the data, suggesting that heat redistribution to the night side
of the planet is highly efficient.Comment: 12 pages, 3 figures, accepted for publication in the Astrophysical
Journal Letter
Not Just a Theory—The Utility of Mathematical Models in Evolutionary Biology
Models have made numerous contributions to evolutionary biology, but misunderstandings persist regarding their purpose. By formally testing the logic of verbal hypotheses, proof-of-concept models clarify thinking, uncover hidden assumptions, and spur new directions of study. thumbnail image credit: modified from the Biodiversity Heritage Librar
Quantum Entanglement and Communication Complexity
We consider a variation of the multi-party communication complexity scenario
where the parties are supplied with an extra resource: particles in an
entangled quantum state. We show that, although a prior quantum entanglement
cannot be used to simulate a communication channel, it can reduce the
communication complexity of functions in some cases. Specifically, we show
that, for a particular function among three parties (each of which possesses
part of the function's input), a prior quantum entanglement enables them to
learn the value of the function with only three bits of communication occurring
among the parties, whereas, without quantum entanglement, four bits of
communication are necessary. We also show that, for a particular two-party
probabilistic communication complexity problem, quantum entanglement results in
less communication than is required with only classical random correlations
(instead of quantum entanglement). These results are a noteworthy contrast to
the well-known fact that quantum entanglement cannot be used to actually
simulate communication among remote parties.Comment: 10 pages, latex, no figure
Mineralogy of Asteroids from Observations with the Spitzer Space Telescope
Visible and near-infrared (approximately 0.3 to 4.0 microns) spectroscopy has been successfully employed since the early 1970 s to infer the surface compositions of asteroids. Spectroscopic observations in the thermal infrared (approximately 5 to 40 microns) are similarly promising. Silicate spectra in this range are dominated by Si-O stretch and bend fundamentals, and other minerals have similarly diagnostic bands. Observations in this spectral range are difficult from the ground due to strong telluric absorptions and background emission. Nevertheless, spectral structure has been detected on a few asteroids in the 8 to 14-micron range from the ground, as well as from orbit with the ISO satellite. The Spitzer Space Telescope can observe asteroids with much higher sensitivity over a broader wavelength range than is possible from the ground or was possible with ISO. We present results of measurements of asteroids with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope
Quantum rejection sampling
Rejection sampling is a well-known method to sample from a target
distribution, given the ability to sample from a given distribution. The method
has been first formalized by von Neumann (1951) and has many applications in
classical computing. We define a quantum analogue of rejection sampling: given
a black box producing a coherent superposition of (possibly unknown) quantum
states with some amplitudes, the problem is to prepare a coherent superposition
of the same states, albeit with different target amplitudes. The main result of
this paper is a tight characterization of the query complexity of this quantum
state generation problem. We exhibit an algorithm, which we call quantum
rejection sampling, and analyze its cost using semidefinite programming. Our
proof of a matching lower bound is based on the automorphism principle which
allows to symmetrize any algorithm over the automorphism group of the problem.
Our main technical innovation is an extension of the automorphism principle to
continuous groups that arise for quantum state generation problems where the
oracle encodes unknown quantum states, instead of just classical data.
Furthermore, we illustrate how quantum rejection sampling may be used as a
primitive in designing quantum algorithms, by providing three different
applications. We first show that it was implicitly used in the quantum
algorithm for linear systems of equations by Harrow, Hassidim and Lloyd.
Secondly, we show that it can be used to speed up the main step in the quantum
Metropolis sampling algorithm by Temme et al.. Finally, we derive a new quantum
algorithm for the hidden shift problem of an arbitrary Boolean function and
relate its query complexity to "water-filling" of the Fourier spectrum.Comment: 19 pages, 5 figures, minor changes and a more compact style (to
appear in proceedings of ITCS 2012
Information-theoretic interpretation of quantum error-correcting codes
Quantum error-correcting codes are analyzed from an information-theoretic
perspective centered on quantum conditional and mutual entropies. This approach
parallels the description of classical error correction in Shannon theory,
while clarifying the differences between classical and quantum codes. More
specifically, it is shown how quantum information theory accounts for the fact
that "redundant" information can be distributed over quantum bits even though
this does not violate the quantum "no-cloning" theorem. Such a remarkable
feature, which has no counterpart for classical codes, is related to the
property that the ternary mutual entropy vanishes for a tripartite system in a
pure state. This information-theoretic description of quantum coding is used to
derive the quantum analogue of the Singleton bound on the number of logical
bits that can be preserved by a code of fixed length which can recover a given
number of errors.Comment: 14 pages RevTeX, 8 Postscript figures. Added appendix. To appear in
Phys. Rev.
- …