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Abstract

We consider a variation of the multi-party communication complex-
ity scenario where the parties are supplied with an extra resource: par-
ticles in an entangled quantum state. We show that, although a prior
quantum entanglement cannot be used to simulate a communication
channel, it can reduce the communication complexity of functions in
some cases. Specifically, we show that, for a particular function among
three parties (each of which possesses part of the function’s input), a
prior quantum entanglement enables them to learn the value of the
function with only three bits of communication occurring among the
parties, whereas, without quantum entanglement, four bits of commu-
nication are necessary. We also show that, for a particular two-party
probabilistic communication complexity problem, quantum entangle-
ment results in less communication than is required with only classical
random correlations (instead of quantum entanglement). These results
are a noteworthy contrast to the well-known fact that quantum entan-
glement cannot be used to actually simulate communication among
remote parties.
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1 Introduction and summary of results

One of the most remarkable aspects of quantum physics is the notion of
quantum entanglement. If two particles are in an entangled state then, even
if the particles are physically separated by a great distance, they behave in
some respects as a single entity rather than as two separate entities. The
entangled particles exhibit what physicists call nonlocal effects. Informally,
these are effects that cannot occur in a world governed by the laws of “classi-
cal” physics unless communication occurs between the particles. Moreover,
if the physical separation between the particles is large and the time between
the observations is small then this entailed communication may exceed the
speed of light! Nonlocal effects were alluded to in a famous 1935 paper by
Einstein, Podolsky, and Rosen [6]. Einstein later referred to this as spukhafte
Fernwirkungen [spooky actions at a distance] (see [3, 10] for more historical
background). In 1964, Bell [1] formalized the notion of two-particle nonlo-
cality in terms of correlations among probabilities in a scenario where one
of a number of a measurements are performed on each particle. He showed
that the results of the measurements that occur quantum physically can be
correlated in a way that cannot occur classically unless the type of mea-
surement selected to be performed on one particle affects the result of the
measurement performed on the other particle.

In reality—which is quantum physical—the nonlocal effects exhibited by
entangled particles do not involve any communication (consequently, non-
locality does not entail communication faster than the speed of light). In
operational terms, the “spooky actions at a distance” that Einstein referred
to cannot be used to simulate a communication channel. More precisely, if
two physically separated parties, Alice and Bob, initially possess entangled
particles and then Alice is given an arbitrary bit x, there is no way for Alice
to manipulate her particles in order to convey x to Bob when he performs
measurements on his particles. The probabilities pertaining to any conceiv-
able measurement that Bob can perform on his particles are all determined
by the (reduced) density matrix of Bob’s particles (see [12] for definitions and
discussion), and this density matrix does not change when Alice manipu-
lates her particles by unitary transformations and measurements. Moreover,
entanglement cannot even be used to compress information in the following
sense: for Alice to convey n arbitrary bits to Bob, she must in general send
n bits—sending n− 1 bits will not suffice.

Similar results apply to communications involving more than two parties.
For example, suppose that Alice, Bob, and Carol share entangled particles,
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and then each is given an arbitrary n-bit string. If each party wants to
convey his n bits to the other parties using (say) a global broadcast channel
then, in spite of the quantum entanglement, Alice must send n bits to the
channel, and so must Bob and Carol. The argument is again in terms of
the fact that the reduced density matrix of each party’s particles cannot be
changed by the other parties.

Now, consider the related but different scenario of communication com-
plexity. Yao [13] introduced and investigated the following problem. Alice
obtains an n-bit string x, and Bob obtains an n-bit string y and the goal is for
both of them to determine f(x, y), for some function f : {0, 1}n×{0, 1}n →
{0, 1}, with as little communication between them as possible. Clearly, n+1
bits of communication always suffice (Alice sends all her n bits to Bob, Bob
computes f(x, y), and sends the one-bit answer to Alice), but for some func-
tions fewer bits suffice. This scenario and variations of it have been widely
studied (see [9] for an extensive survey).

In one variation of the above communication complexity scenario, there
are more than two parties, each of which is given a subset of the input data.
In another variation, all parties have access to a common string of random
bits. This string can be assumed to have been communicated during a “set
up” stage, prior to the parties’ being given their input data. For some func-
tions, this prior random string reduces the communication complexity for a
worst-case input if a small error probability is permitted (here, a “worst-case
input” is understood to be chosen independently of the random string). If
no error probability is allowed then a prior shared random string does not
reduce the communication complexity (in a worst-case execution). Also, if
the input is selected randomly with respect to some arbitrary but fixed prob-
ability distribution then, even if a particular error probability is permitted,
the communication complexity does not decrease by having a prior shared
random string ([13, 9]).

In the present paper, we consider a variation of the above “classical”
communication complexity scenarios where a prior quantum entanglement
is available to the parties. We first consider the case where no error proba-
bility is permitted. On the face of it, it may appear that a prior quantum
entanglement does not reduce the communication complexity of functions.
Consider the following informal argument, which we phrase in a three-party
setting, where Alice, Bob, and Carol are given input strings x, y, and z

respectively, and the goal is to collectively determine f(x, y, z):
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1. Assume that the classical communication complexity of function
f(x, y, z) is k. That is, k bits of communication are necessary for
Alice, Bob, and Carol to acquire the answer.

2. A prior entanglement cannot simulate or even compress any particular
act of communication.

3. Ergo, even with a prior quantum entanglement, the communication
complexity of function f(x, y, z) is k.

We shall demonstrate that this conclusion is incorrect by a counterexam-
ple f(x, y, z) where: without a prior quantum entanglement, four bits of
communication are necessary to compute f(x, y, z); whereas, with a prior
quantum entanglement, three bits of communication are sufficient to com-
pute f(x, y, z).

Our protocol employing quantum entanglement uses less communication
than necessary by any classical protocol by manipulating entangled states to
circumvent (rather than simulate) communication. Our technique is based
on an interesting variation of Bell’s Theorem, due to Mermin [11], for three
particles which is “deterministic” in the sense that all the associated proba-
bilities are either zero or one. Mermin’s result is a refinement of a previous
four-particle result, due to Greenberger, Horne, and Zeilinger [7].

We also give an example of a two-party probabilistic communication com-
plexity scenario with a function g(x, y) where: with a classical shared ran-
dom string but no prior quantum entanglement, three bits of communication
are necessary to compute g(x, y) with probability at least cos2(π8 ) = 0.853...;
whereas, with a prior quantum entanglement, two bits of communication are
sufficient to compute g(x, y) with the same probability. This is based on a
variation of Bell’s Theorem, due to Clauser, Horne, Shimony, and Holt [5].

Although, in both of the above cases, the savings in communication are
not in an asymptotic setting, we consider these results as evidence that
quantum entanglement can potentially change the nature of communication
complexity.

This paper is an extension of our previous version of these results [4].
Also, Grover [8] recently independently obtained results related to commu-
nication complexity in a probabilistic setting.
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2 A three-party deterministic scenario

Consider the following three-party scenario. Alice, Bob, and Carol receive
x, y, and z respectively, where x, y, z ∈ {0, 1, 2, 3}, and the condition

x+ y + z ≡ 0 (mod 2) (1)

is promised. The common goal is to compute the value of the function

f(x, y, z) =
(x+ y + z) mod 4

2
, (2)

(which has value 0 or 1 by Eq. (1)). We represent the numbers x, y, and z in
binary notation as x1x0, y1y0, and z1z0. In terms of these bits, the promise
of Eq. (1) is

x0 ⊕ y0 ⊕ z0 = 0, (3)

and the function of Eq. (2) for inputs satisfying Eq. (3) is

f(x, y, z) = x1 ⊕ y1 ⊕ z1 ⊕ (x0 ∨ y0 ∨ z0). (4)

We assume the standard multi-party communication channel where each bit
that a party sends is broadcast to all other parties. Also, at the conclusion of
the protocol, all parties must be able to determine the value of the function.

In the following two subsections, we show that, with a prior quantum en-
tanglement, three bits of communication are sufficient to compute f(x, y, z),
whereas, without a prior quantum entanglement, four bits of communication
are necessary to compute f(x, y, z).

2.1 The communication complexity with quantum entangle-
ment is three bits

We now show that if Alice, Bob, and Carol initially share a certain entangle-
ment of three qubits then there is a protocol in which each party broadcasts
one classical bit such that the value f(x, y, z) is known to all parties after-
wards. The entanglement is

|QAQBQC〉 = 1
2(|000〉 − |011〉 − |101〉 − |110〉), (5)

where Alice, Bob, and Carol have qubits QA, QB, and QC , respectively.
(This is equivalent to the state examined in [11] in an alternate basis.)

The idea is based on applying Mermin’s result [11] to enable Alice, Bob,
and Carol to obtain bits a, b, and c respectively, such that a ⊕ b ⊕ c =
x0 ∨ y0 ∨ z0. This is achieved by the following procedures:
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Procedure for Alice: Procedure for Bob:
if x0 = 1 then apply H to QA if y0 = 1 then apply H to QB

measure QA yielding bit a measure QB yielding bit b

Procedure for Carol:
if z0 = 1 then apply H to QC

measure QC yielding bit c

In the above, H is the Hadamard transform, which is represented in the
standard basis (|0〉 and |1〉) as

H = 1√
2

(
1 1
1 −1

)
, (6)

and the measurements are performed in the standard basis. In the language
of operators, if a party’s low-order bit is 0 then the measurement is with
respect to the Pauli matrix σz; otherwise (if the low-order bit is 1), the
measurement is with respect to the Pauli matrix σx.

Lemma 1: In the described procedure, a⊕ b⊕ c = x0 ∨ y0 ∨ z0.

Proof: Recall that, by the promise of Eq. (3), x0y0z0 ∈ {000, 011, 101, 110}.
First, consider the case where x0y0z0 = 000. In this case, no H transform

is applied to any of the qubits QA, QB, or QC . Therefore, QAQBQC is
measured in state (5), which implies that a⊕ b⊕ c = 0 = x0 ∨ y0 ∨ z0.

Next, in the case where x0y0z0 = 011, a Hadamard transform is applied
to QB and to QC , but not to QA. Therefore, QAQBQC is measured in state

I ⊗H ⊗H
(

1
2(|000〉 − |011〉 − |101〉 − |110〉)

)
=

1
2(|001〉 + |010〉 − |100〉 + |111〉), (7)

so a ⊕ b ⊕ c = 1 = x0 ∨ y0 ∨ z0. The remaining cases where x0y0z0 = 101
and 110 are similar by the the symmetry of state (5). 2

After the above procedure, Alice broadcasts the bit (x1⊕a), Bob broad-
casts (y1⊕b), and Carol broadcasts (z1⊕c). At this point, each party knows
(x1 ⊕ a), (y1 ⊕ b), and (z1 ⊕ c), from which they can each determine the bit

(x1 ⊕ a)⊕ (y1 ⊕ b)⊕ (z1 ⊕ c) = x1 ⊕ y1 ⊕ z1 ⊕ (a⊕ b⊕ c)
= x1 ⊕ y1 ⊕ z1 ⊕ (x0 ∨ y0 ∨ z0), (8)

as required.
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2.2 The communication complexity without quantum entan-
glement is four bits

In this section, we show that, in the classical setting, four bits of communi-
cation are necessary to compute f(x, y, z).

One can view any k-bit protocol as a binary tree of depth k, where
each node that is not a leaf is labelled A(lice), B(ob), or C(arol). This
labelling indicates which party will broadcast the next bit. An execution of
the protocol corresponds to a path from the root of the tree to a leaf. Each
leaf node is labelled 0 or 1, indicating the common output that results from
the execution leading to that leaf. To establish our lower bound, it suffices
to show that no protocol-tree of depth three correctly computes f(x, y, z).

We use the following lemma, which implies that, in any correct protocol,
all three parties must broadcast at least one bit.

Lemma 2: For any correct protocol-tree, on every path from its root to a
leaf, each of A, B, and C must occur as a label at least once.

Proof: Suppose that there exists a path along which one party, say A,
does not occur as a label. Let the leaf of that path be labelled l ∈ {0, 1}.
Since this path does not include any reference to Alice’s data, the same path
is taken if x1 is negated and all other input bits are held constant. But, by
Eq. (4), negating x1 also negates the value of f(x, y, z), so the protocol
cannot be correct for both possible values of x1. 2

Next, suppose we have a protocol-tree of depth three for f(x, y, z). As-
sume, without loss of generality, that the root of the tree is labelled A. The
bit that Alice broadcasts is some function φ : {0, 1}2 → {0, 1} of her in-
put data x alone. The function φ partitions {0, 1}2 into two classes φ−1(0)
and φ−1(1). Call these two classes S0 and S1, and assume (without loss of
generality) that 00 ∈ S0.

Next, assume for the moment that the two children of the root of the
protocol-tree are both labelled B (we shall see later that the other cases
can be handled similarly). Then, by Lemma 2, the four children of B are
all labelled C. Therefore, after Alice and Bob each send a bit, Carol must
have enough information to determine the value of f(x, y, z), since Carol
broadcasts the third bit and does not gain any information from doing this.
We shall show that this is impossible whatever S0 and S1 are.

There are two cases (the second of which has three subcases):

Case 1 |S0| = 1: Recall that 00 ∈ S0, so 01, 10, 11 ∈ S1. Now, should
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the bit that Alice broadcasts specify that x ∈ S1, Bob must follow this by
broadcasting one bit from which Carol can completely determine the value
of f(x, y, z). Suppose that Bob sends the bit consistent with y = 01. If
z = 00 then, from Carol’s perspective, the possible values of (x, y, z) include
(01, 01, 00) and (11, 01, 00), for which the respective values of f(x, y, z) are
1 and 0. Therefore, Carol cannot determine the value of f(x, y, z) in this
case.

Case 2 |S0| ≥ 2: There are three subcases where S0 contains 01, 10 or
11, in addition to 00.

Case 2.1 S0 contains 00 and 01: Here, we consider the case where
Alice broadcasts the bit specifying that x ∈ S0. Bob must follow this by
broadcasting one bit from which Carol can completely determine the value
of f(x, y, z). The bit that Bob broadcasts induces a partition of the possible
values for y into two classes. If z = 00 then, from Carol’s perspective, after
receiving Alice’s bit but before receiving Bob’s bit, the possible values of
(x, y, z) include (00, 00, 00), (00, 10, 00), (01, 01, 00), and (01, 11, 00), and the
respective values of f(x, y, z) on these points are 0, 1, 1, and 0. Therefore,
for the protocol to be successful in this case, the partition that Bob’s bit
induces on y must place 00 and 11 in one class and 01 and 10 in the other class
(otherwise Carol would not be able to determine f(x, y, z) when z = 00). On
the other hand, if z = 01 then, from Carol’s perspective, the possible values
of (x, y, z) include (00, 01, 01), (00, 11, 01), (01, 00, 01), and (01, 10, 01) and
the respective values of f(x, y, z) on these points are 1, 0, 1, and 0. Since
we have established that Bob’s bit does not distinguish between y = 00
and y = 11, Bob’s bit is not sufficient information for Carol to determine
f(x, y, z) in this case.

Case 2.2 S0 contains 00 and 10: The argument is similar to that in
Case 1. Assume that Alice sends the bit specifying that x ∈ S0. If Bob
follows this by sending the bit consistent with y = 00 and z = 00 then, from
Carol’s perspective, the possible values of (x, y, z) include (00, 00, 00) and
(10, 00, 00) and the respective values of f(x, y, z) on these points are 0 and
1. Thus, Carol cannot determine the value of f(x, y, z) in this case.

Case 2.3 S0 contains 00 and 11: The argument is similar to Case
2.1. Suppose that Alice broadcasts the bit specifying that x ∈ S0. Consider
Carol’s perspective. If z = 00 then the possible values of (x, y, z) include
(00, 00, 00), (00, 10, 00), (11, 01, 00), and (11, 11, 00) and the respective val-
ues of f(x, y, z) on these points are 0, 1, 0, and 1; whereas, if z = 01 then
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the possible values of (x, y, z) include (00, 01, 10), (00, 11, 01), (11, 00, 01),
and (11, 10, 01) and the respective values of f(x, y, z) on these points are 1,
0, 0, 1. No binary partitioning of y will work for both possibilities.

The cases were the two children of the root of the protocol-tree are CC,
CB and BC have an analogous proof as above with the roles of B and C
possibly reversed.

This completes the proof of the lower bound of four bits. There is a
straightforward four-bit protocol, demonstrating that this bound is tight.

2.3 Application to a three-party variation of the inner prod-
uct function

In this section, we show that f(x, y, z) is a generalization of a restricted
version the three-party inner product. The following function is considered
in [4]. Alice, Bob, and Carol are given n-bit strings x, y, and z respectively,
which are subject to the condition that

x⊕ y ⊕ z =

n︷ ︸︸ ︷
11 . . . 1, (9)

(where ⊕ is applied bitwise) and the goal is to determine the function

GIP(x, y, z) = (x1 ∧ y1 ∧ z1)⊕ · · · ⊕ (xn ∧ yn ∧ zn). (10)

An alternative way of expressing this problem is to impose no restriction on
the inputs, x, y, z, and to extend GIP to a relation such that on the points
where Eq. (9) is violated, both 0 and 1 are acceptable outputs. Clearly, this
problem has the same communication complexity as the original one.

Note that, from the perspective of any two of the three parties, this
problem is exactly equivalent to the two-party inner product. Thus, if only
two parties participate in the communication, the classical communication
complexity is the same as that of the two-party inner product function,
which is n + 1 ([9]). From this, one might suspect that, even if all three
parties participate in the communication, the classical communication com-
plexity remains close to n. In fact, in [4], it is shown that, to solve this
problem, it suffices for Alice, Bob, and Carol to: (a) count the number of
0s in their respective input strings; (b) determine the sum of these three
quantities modulo four. Also, this sum must be even. This is equivalent to
the problem defined by Eqs. (1) and (2), which has classical communication
complexity four, and quantum communication complexity three. Therefore,
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for GIP(x, y, z) as defined by Eqs. (9) and (10), the classical communication
complexity is at most four and the quantum communication complexity is
at most three. Also, in [4], it is shown that, in a slightly different communi-
cation model, the classical communication complexity of GIP(x, y, z) is at
least three. A classical lower bound of four in our current communication
model can be obtained by slightly modifying the proof in [4].

3 A two-party probabilistic scenario

Consider the following probabilistic two-party communication complexity
scenario. Alice and Bob receive x and y respectively, where x, y ∈ {0, 1}2.
The common goal is to compute the value of the function

g(x, y) = x1 ⊕ y1 ⊕ (x0 ∧ y0), (11)

with as high probability as possible. An execution is considered successful if
and only if the value determined by Alice and the value determined by Bob
are both correct.

In the following two subsections, we show that, with a prior quantum
entanglement and two bits of communication, the probability of success can
be at least cos2(π8 ) = 0.853..., whereas, with a shared random string instead
of quantum entanglement, and two bits of communication, the probability
of success cannot exceed 0.75. Thus, without prior entanglement, to achieve
a success probability of at least cos2(π8 ), three bits of communication are
necessary.

3.1 With quantum entanglement

We now show that if Alice and Bob initially share a certain entanglement
of two qubits then there is a two-bit protocol in which both parties out-
put the correct value of g(x, y) with probability cos2(π8 ) = 0.853.... The
entanglement is a so-called Einstein-Podolsky-Rosen (EPR) pair

|QAQB〉 = 1√
2
(|00〉 − |11〉). (12)

The idea is based on applying the result of Clauser, Horne, Shimony,
and Holt [5] to enable Alice and Bob to obtain bits a and b such that

Pr[a⊕ b = x0 ∧ y0] = cos2(π8 ). (13)

This is achieved by the following procedures:
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Procedure for Alice: Procedure for Bob:
if x0 = 0 then if y0 = 0 then

apply R(− π
16) to QA apply R(− π

16) to QB

else else
apply R(3π

16 ) to QA apply R(3π
16 ) to QB

measure QA yielding bit a measure QB yielding bit b

In the above, R(θ) is the rotation by angle θ, which is represented in the
standard basis as

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, (14)

and the measurements are performed in the standard basis.
The fact that the above protocol satisfies Eq. (13) follows from the fact

that if R(θ1)⊗R(θ2) is applied to state (12) then the resulting state is

|QAQB〉 = 1√
2

(cos(θ1 + θ2)(|00〉 − |11〉) + sin(θ1 + θ2)(|01〉 + |10〉)) , (15)

which is straightforward to verify.
After this procedure, Alice sends (a⊕x1) to Bob, and Bob sends (b⊕y1)

to Alice. At this point, each party can determine the bit

(a⊕ x1)⊕ (b⊕ y1) = x1 ⊕ y1 ⊕ (a⊕ b), (16)

which equals x1 ⊕ y1 ⊕ (x0 ∧ y0) with probability cos2(π8 ), as required.

3.2 With shared classical random bits but no quantum en-
tanglement

We now show that if Alice and Bob initially share classical random bits but
no quantum entanglement then there is no two-bit protocol in which both
parties output the correct value of g(x, y) with probability greater than 3

4 .
By Theorem 3.20 of [9], it is sufficient to prove the lower bound on the error
probability for all deterministic protocols with respect to random inputs
from {0, 1}2 × {0, 1}2 (which we can take to be uniformly distributed). As
noted in Section 2.2, we can represent any 2-bit protocol as a binary tree of
depth 2, with non-leaf nodes labelled A(lice) and B(ob).

Assume, without loss of generality, that the root of the protocol-tree is
labelled A. The first bit that Alice sends is some function φ : {0, 1}2 → {0, 1}
of her input data x alone. The function φ partitions {0, 1}2 into two classes

11



00 01 10 11
00 0 0 1 1
01 0 1 1 0
10 1 1 0 0
11 1 0 0 1

Table 1: The values of g(x, y). The columns are indexed by x and the rows are
indexed by y.

S0 = φ−1(0) and S1 = φ−1(1). Let the first child and second child of the root
correspond to the paths traversed when the first bit sent (by Alice) indicates
that x ∈ S0 and x ∈ S1, respectively. We must consider all partitions S0

and S1 in combination with all cases where the two children of the root are
BB, AB, or AA (the case BA can be omitted by symmetry).

Lemma 3: If the child corresponding to Si is labelled B then, conditioned
on x ∈ Si, the probability that Bob correctly determines g(x, y) is at most:
1, if |Si| = 1; 3

4 , if |Si| = 2; and 2
3 , if |Si| = 3.

Proof: The case where |Si| = 1 is trivial.
For the case where |Si| = 2, first consider the subcase where Si =

{00, 01}. Under the condition x ∈ Si, (x, y) is a position in one of the
first two columns of the table, and Alice’s bit to Bob indicates this to him.
From Bob’s perspective, if y = 00 then g(x, y) = 0, so Bob can determine
the correct answer. Similarly, if y = 10 then g(x, y) = 1, so Bob can de-
termine the correct answer. However, if y = 01 then, since the first two
columns of the table differ in this row, whatever function of Alice’s mes-
sage and y Bob computes, the probability that it will match g(x, y) is at
most 1

2 . Similarly, if y = 01 then Bob computes the correct answer with
probability at most 1

2 . Since these four values of y are equiprobable, the
probability that Bob correctly computes g(x, y) conditioned on x ∈ Si is at
most 1

4 ·1+ 1
4 ·1+ 1

4 ·
1
2 + 1

4 ·
1
2 = 3

4 . The other five subcases in which |Si| = 2
are handled similarly.

For the case where |Si| = 3, first consider the subcase where Si =
{00, 01, 10}. Under the condition x ∈ Si, (x, y) is a position in one of the
first three columns of the table, and Alice’s bit to Bob indicates this to him.
By looking at these three columns of the table, we observe that, from Bob’s
perspective, whatever the value of y, the probability of Bob determining
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g(x, y) is at most 2
3 . The other two subcases in which |Si| = 3 are handled

similarly. 2

Now, by Lemma 3, if the two children of the root are BB then the
probability that Bob correctly determines g(x, y) is at most: 1

4 ·1+ 3
4 ·

2
3 = 3

4 ,
if |S0| 6= |S1|; and 1

2 ·
3
4 + 1

2 ·
3
4 = 3

4 , if |S0| = |S1|.
Next, we show that, for protocol-trees in which the two children of the

root are not BB, the correctness probability is actually less than 3
4 .

Lemma 4: If the child corresponding to Si is labelled A then, condi-
tioned on x ∈ Si, the probability that Alice correctly determines g(x, y) is
at most 1

2 .

Proof: If the condition x ∈ Si occurs then Alice receives no information
from Bob. Therefore, from Alice’s perspective, the value of g(x, y) is either
y1, y1 ⊕ y0, 1 ⊕ y1, or 1 ⊕ y1 ⊕ y0 (corresponding to the cases x = 00, 01,
10, and 11 respectively). The result now follows from the fact that, from
Alice’s perspective, y is uniformly distributed over {0, 1}2. 2

By Lemma 4, it follows that, if the two children of the root are AA
then the probability that Bob correctly determines g(x, y) is at most 1

2 . The
remaining case is where the two children of the root are AB. By applying
Lemma 4 for the first child and Lemma 3 for the second child, the probability
that both Alice and Bob correctly determine g(x, y) is at most:

• 1
4 ·

1
2 + 3

4 ·
2
3 = 5

8 , if |S0| = 1 and |S1| = 3

• 1
2 ·

1
2 + 1

2 ·
3
4 = 5

8 , if |S0| = 2 and |S1| = 2

• 3
4 ·

1
2 + 1

4 · 1 = 5
8 , if |S0| = 3 and |S1| = 1.

This completes the proof that no two-bit protocol is correct with prob-
ability more than 3

4 . There is a straightforward errorless three-bit protocol.
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