2,722 research outputs found
Optomechanical Cavity Cooling of an Atomic Ensemble
We demonstrate cavity sideband cooling of a single collective motional mode
of an atomic ensemble down to a mean phonon occupation number of
2.0(-0.3/+0.9). Both this minimum occupation number and the observed cooling
rate are in good agreement with an optomechanical model. The cooling rate
constant is proportional to the total photon scattering rate by the ensemble,
demonstrating the cooperative character of the light-emission-induced cooling
process. We deduce fundamental limits to cavity-cooling either the collective
mode or, sympathetically, the single-atom degrees of freedom.Comment: Paper with supplemental material: 4+6 pages, 4 figures. Minor
revisions of text. Supplemental material shortened by removal of
supplementary figur
Natural extension of choice functions
International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU (17 th, 2018, Cádiz, Spain
Electron–nuclear double resonance on copper (II) tetraimidazole
We have investigated the electron–nuclear double resonance (ENDOR) from frozen aqueous solutions of 65Cu++(imidazole)4, 65Cu++ (imidazole–15N)4, and 65Cu++(imidazole–Dn)4, where n = 1, 2, 3, and 4 for selectively deuterated imidazole. We have observed ENDOR associated with the imidazole protons and the two imidazole nitrogens. The selective deuteration has allowed us to attempt identification of the weakly coupled protons responsible for the ENDOR spectrum, and a comparison of the overall line shape of that spectrum taken at two extreme points of the EPR spectrum suggests that some of the imidazole planes are tilted with respect to the plane of the complex. The ENDOR arising from the nitrogen nearest the copper is primarily isotropic with A(g⊥) = 41.6±1.5 MHz and A(g∥) = 39.8±1.5 MHz. The resonance shows little structure and seems consistent with a picture that requires some inequivalence among the various imidazoles. The remote nitrogen ENDOR reveals both hyperfine and quadrupole effects with approximately isotropic A(14N) = 1.79 MHz, Qz′z′?0.360 MHz, and Qx′x′y′x′?0.349 MHz. These values are in agreement with the results of the nuclear modulation effect [J. Chem. Phys. 69, 4921 (1978)]. The values for the quadrupole constants are thought to be accurate within 10% and are the same as are found in free imidazole. It is also demonstrated that, in this instance, ENDOR and the nuclear modulation effect are complementary in that they have each provided different parts of the same hyperfine spectrum.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70838/2/JCPSA6-75-5-2098-1.pd
Follow-up of bone lesions in an experimental multiple myeloma mouse model: description of an in vivo technique using radiography dedicated for mammography.
The evolution of bone lesions in transplantable C57BL/KaLwRjj 5T mouse myeloma (MM) has been followed in vivo. Mice were anaesthetised and a radiograph of the pelvis and hind legs was performed by a radiograph dedicated for mammography. This is the first description of an in vivo technique under experimental conditions whereby the development of bone lesions owing to the MM growth was demonstrated
Methods for removal of unwanted signals from gravity time-series : comparison using linear techniques complemented with analysis of system dynamics
We thanks the participants of the 35th General Assembly of the European Seismological Commission for comments on preliminary results. The authors are grateful to all IGETS contributors, particularly to the station operators and to ISDC/GFZ-Potsdam for providing the original gravity data used in this study. We also thank the developers of ATLANTIDA3.1 and UTide. Part of this work was performed using the ICSMB High Performance Computing Cluster, University of Aberdeen. We also thanks M. Thiel and A. Moura for reviewing a preliminary version and making comments on the methods section and M.A. Ara´ujo for comments on Lyapunov exponents. Funding: A. Valencio is supported by CNPq, Brazil [206246/2014-5]; and received a travel grant from the School of Natural and Computing Sciences, University of Aberdeen [PO2073498], for a presentation including preliminary results.Peer reviewedPostprintPublisher PD
Simultaneous Anaerobic and Aerobic Ammonia and Methane Oxidation under Oxygen Limitation Conditions
Methane and ammonia have to be removed from wastewater treatment effluent in order to discharge it to receiving water bodies. A potential solution for this is a combination of simultaneous ammonia and methane oxidation by anaerobic ammonia oxidation (anammox) bacteria and nitrite/nitrate-dependent anaerobic methane oxidation (N-damo) microorganisms. When applied, these microorganisms will be exposed to oxygen, but little is known about the effect of a low concentration of oxygen on a culture containing these microorganisms. In this study, a stable coculture containing anammox and N-damo microorganisms in a laboratory scale bioreactor was established under oxygen limitation. Membrane inlet mass spectrometry (MIMS) was used to directly measure the in situ simultaneous activity of N-damo, anammox, and aerobic ammonia-oxidizing microorganisms. In addition, batch tests revealed that the bioreactor also harbored aerobic methanotrophs and anaerobic methanogens. Together with fluorescence in situ hybridization (FISH) analysis and metagenomics, these results indicate that the combination of N-damo and anammox activity under the continuous supply of limiting oxygen concentrations is feasible and can be implemented for the removal of methane and ammonia from anaerobic digester effluents. IMPORTANCE Nitrogen in wastewater leads to eutrophication of the receiving water bodies, and methane is a potent greenhouse gas; it is therefore important that these are removed from wastewater. A potential solution for the simultaneous removal of nitrogenous compounds and methane is the application of a combination of nitrite/ nitrate-dependent methane oxidation (N-damo) and anaerobic ammonia oxidation (annamox). In order to do so, it is important to investigate the effect of oxygen on these two anaerobic processes. In this study, we investigate the effect of a continuous oxygen supply on the activity of an anaerobic methane- and ammonia-oxidizing coculture. The findings presented in this study are important for the potential application of these two microbial processes in wastewater treatment
Antitumour and antiangiogenic effects of Aplidin® in the 5TMM syngeneic models of multiple myeloma
Aplidin® is an antitumour drug, currently undergoing phase II evaluation in different haematological and solid tumours. In this study, we analysed the antimyeloma effects of Aplidin in the syngeneic 5T33MM model, which is representable for the human disease. In vitro, Aplidin inhibited 5T33MMvv DNA synthesis with an IC50 of 3.87 nM. On cell-cycle progression, the drug induced an arrest in transition from G0/G1 to S phase, while Western blot showed a decreased cyclin D1 and CDK4 expression. Furthermore, Aplidin induced apoptosis by lowering the mitochondrial membrane potential, by inducing cytochrome c release and by activating caspase-9 and caspase-3. For the in vivo experiment, 5T33MM-injected C57Bl/KaLwRij mice were intraperitoneally treated with vehicle or Aplidin (90 μg kg−1 daily). Chronic treatment with Aplidin was well tolerated and reduced serum paraprotein concentration by 42% (P<0.001), while BM invasion with myeloma cells was decreased by 35% (P<0.001). Aplidin also reduced the myeloma-associated angiogenesis to basal values. This antiangiogenic effect was confirmed in vitro and explained by inhibition of endothelial cell proliferation and vessel formation. These data indicate that Aplidin is well tolerated in vivo and its antitumour and antiangiogenic effects support the use of the drug in multiple myeloma
Bounds on gravitational wave backgrounds from large distance clock comparisons
Our spacetime is filled with gravitational wave backgrounds that constitute a
fluctuating environment created by astrophysical and cosmological sources.
Bounds on these backgrounds are obtained from cosmological and astrophysical
data but also by analysis of ranging and Doppler signals from distant
spacecraft. We propose here a new way to set bounds on those backgrounds by
performing clock comparisons between a ground clock and a remote spacecraft
equipped with an ultra-stable clock, rather than only ranging to an onboard
transponder. This technique can then be optimized as a function of the signal
to be measured and the dominant noise sources, leading to significant
improvements on present bounds in a promising frequency range where different
theoretical models are competing. We illustrate our approach using the SAGAS
project which aims to fly an ultra stable optical clock in the outer solar
system.Comment: 10 pages, 8 figures, minor amendment
- …