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Abstract. We extend the notion of natural extension, that gives the
least committal extension of a given assessment, from the theory of sets
of desirable gambles to that of choice functions. We give an expression of
this natural extension and characterise its existence by means of a prop-
erty called avoiding complete rejection. We prove that our notion reduces
indeed to the standard one in the case of choice functions determined by
binary comparisons, and that these are not general enough to determine
all coherent choice function. Finally, we investigate the compatibility of
the notion of natural extension with the structural assessment of indif-
ference between a set of options.
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1 Introduction

Since the publication of the seminal works in [1] and [2], coherent choice
functions have been used widely as a model of the rational behaviour of
an individual or a group. In particular, [3] established an axiomatisation
of coherent choice functions, generalising the axioms in [4] to allow for
incomparability.
In previous works [5,6], we have investigated some of the properties of
coherent choice functions, their connection with the models considered
earlier by Seidenfeld et al. in [3] and also those particular coherent choice
functions that are related to the optimality criteria of maximality and
E-admissibility. In all those cases we took for granted that the choice
function is given, and coherent. However, it is somewhat unrealistic to
assume that the subject always specifies an entire choice function: this
means that he would have to specify for every option set which are the
options he chooses, and this in a manner that is coherent in the sense that
we shall discuss later on. Rather, a subject will typically specify a choice
function only partially, by specifying the rejection of some options from
some option sets. We call this partial specification of a choice function
his assessment. Such an assessment can consist of an arbitrary amount
of rejection statements; we do not rule out here the possibility that the
subject’s assessment consists of an uncountable collection of rejection
statements.
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The question we shall tackle in this paper is the following: given such an
assessment, what is the implied choice between other option sets, using
only the consequences of coherence?
To answer this question, after giving some preliminary notions in Sect. 2,
we shall define in Sect. 3 the natural extension, when it exists, as the
least committal coherent choice function that ‘extends’ a given assess-
ment. In Sect. 4 we shall show that our notion is compatible with the
eponymous notion established in the theory of sets of desirable gambles,
that correspond to choice functions determined by binary comparisons.
Then in Sect. 5 we use our work to show (i) that a coherent choice func-
tion may not be determined as the infima of a family of binary choice
functions; and (ii) that the notion of natural extension can also be made
compatible with a structural assessment of indifference. Finally, some
additional comments are given in Sect. 6. Due to the space constraints,
proofs have been omitted.

2 Preliminary concepts

Consider a real vector space V provided with the vector addition + and
scalar multiplication. We denote its additive identity by 0. Elements of
V are intended as abstract representation of options between which a
subject can express his preferences, by specifying choice functions. We
therefore call V also the option space. We denote by Q(V) the set of all
non-empty finite subsets of V, a strict subset of the power set P(V) of
V. Elements A of Q(V) are the option sets amongst which a subject can
choose his preferred options. When it is clear what option space V we
are considering, we will also use the simpler notation Q, and use Q0 to
denote those option sets that include 0. We will assume throughout that
V is ordered by a vector ordering �. We will associate with it the strict
partial order ≺, as follows: u ≺ v ⇔ (u � v and u 6= v), for all u and
v in V. For notational convenience, we let V�0 := {u ∈ V : 0 ≺ u},
V≺0 := {u ∈ V : u ≺ 0}, and V�0 := {u ∈ V : u � 0}.

Definition 1. A choice function C on an option space V is a map

C : Q → Q∪ {∅} : A 7→ C(A) such that C(A) ⊆ A.

The idea underlying this simple definition is that a choice function C
selects the set C(A) of ‘best’ options in the option set A. Our definition
resembles the one commonly used in the literature [3,7,8], except perhaps
for an also not entirely unusual restriction to finite option sets [9,10,11].
Equivalently to a choice function C, we may consider its associated rejec-
tion function R, defined by R(A) := A \C(A) for all A in Q. It returns
the options R(A) that are rejected—not selected—by C. We collect all
the rejection functions in the set R. For technical reasons, we shall focus
on rejection functions in this paper. Moreover, we shall restrict our at-
tention to those rejection functions that satisfy a number of rationality
requirements; they are called coherent. For brevity, we will commonly re-
fer to choice functions and rejection functions as choice models, in order
to distinguish them from desirability (see Sect. 4).



Definition 2 (Coherent rejection function). We call a rejection
function R on V coherent if for all A, A1 and A2 in Q, all u and v
in V, and all λ in R>0:
R1. R(A) 6= A;
R2. if u ≺ v then u ∈ R({u, v});
R3. a. if A1 ⊆ R(A2) and A2 ⊆ A then A1 ⊆ R(A);

b. if A1 ⊆ R(A2) and A ⊆ A1 then A1 \A ⊆ R(A2 \A);
R4. a. if A1 ⊆ R(A2) then λA1 ⊆ R(λA2);

b. if A1 ⊆ R(A2) then A1 + {u} ⊆ R(A2 + {u}).
We collect all coherent rejection functions on V in the set R(V), often
simply denoted as R when it is clear from the context which vector space
we are using.

These axioms constitute a subset of the ones introduced by Seidenfeld
et al. [3], duly translated from horse lotteries to our abstract options,
which are more general as shown in earlier work of ours [5, Sect. 3]. In
this respect, our notion of coherence is less restrictive than theirs. On
the other hand, our Axiom R2 is more restrictive than the corresponding
one in [3]. This is necessary in order to link coherent choice functions and
coherent sets of desirable gambles (see [5, Sect. 4]).
In order to be able to use choice models for conservative reasoning, as we
will do, we provide them with a partial order v having the interpretation
of ‘being at most as informative as’. For any R1 and R2 in R, we let
R1 v R2 ⇔ (∀A ∈ Q)(R1(A) ⊆ R2(A)). For any collection R ⊆ R of
rejection functions, the infimum infR is the rejection function given by
(infR)(A) :=

⋂
R∈R R(A) for every A in Q.

3 Natural extension of rejection functions

We consider now a rejection function that is defined on some subset of
the class Q of all option sets, and investigate under which conditions
it is possible to extend it to a rejection function on Q that satisfies
the coherence axioms. Taking into account Axiom R4b, we can assume
without loss of generality that our assessment is made in terms of option
sets that reject the option 0.
To be more specific, we assume that an assessment B is a subset of Q0.
It consists of an arbitrary collection of option sets that include 0. Its
interpretation is that 0 should be rejected from every option set B in B.
We are looking for the least informative coherent rejection function R
that extends the assessment B, by which we mean that 0 ∈ R(B) for all
B in B.3

Definition 3 (Natural extension). Given any assessment B ⊆ Q0,
the natural extension of B is the rejection function

E(B) := inf{R ∈ R : (∀B ∈ B)0 ∈ R(B)} = inf{R ∈ R : R extends B},
3This is not an extension of a rejection function defined on a smaller domain B to

a bigger domain Q0. Rather, it is the extension of an assessment, where we do not
necessarily know all the rejected options in every option set B in B (except for 0).



where we let inf ∅ be equal to idQ, the identity rejection function that
maps every option set to itself.

We can equivalently define the natural extension as a choice function
instead of a rejection function, but that turns out to be notationally
more involved, which is why we have decided to use rejection functions
in this paper.
The above definition is not very useful for practical inference purposes: it
does not provide an explicit expression for E(B). To try and remedy this,
consider the special rejection function RB based on the assessment B,
defined as:

RB(A) :=
{
u ∈ A : (∃A′ ∈ Q)

(
A′ ⊇ A and (∀v ∈ {u} ∪ (A′ \A))(

(A′ − {v}) ∩ V�0 6= ∅ or (∃B ∈ B, ∃µ ∈ R>0){v}+ µB 4 A′
))}

(1.1)

for all A in Q. From here on, we let 4 be the ordering on Q defined by
A1 4 A2 ⇔ (∀u1 ∈ A1)(∃u2 ∈ A2)u1 � u2.

Proposition 1. Consider B ⊆ Q0. Then RB is the least informative
rejection function that satisfies Axioms R2–R4 and extends B.

After inspection of the rationality axioms R1–R4, we see that all axioms
but the first are productive, in the sense that application of these axioms
allow us to identify new rejected options within, possibly, new option sets.
Axiom R1 however is a destructive one: it indicates how far our rejections
can go, and where the inferences should stop. Indeed, it requires that,
within a given option set A, not every element of A should be rejected.
In other words, it requires that, for any given option set, we should
choose at least one of its elements. Therefore we need to be careful and
avoid assessments that lead to a violation of Axiom R1, or to a complete
rejection of some option set.

Definition 4 (Avoiding complete rejection). Given any assessment
B ⊆ Q0, we say that B avoids complete rejection when RB satisfies
Axiom R1.

To see that this notion is not trivial, consider the following example:

Example 1. As an example of an assessment that does not avoid com-
plete rejection, consider B := {{0, u}, {0,−u}} ⊆ Q0 for an arbitrary u
in V. By Prop. 1, RB extends B (so 0 ∈ RB({0, u}) and 0 ∈ RB({0,−u}))
and satisfies Axioms R2–R4. By Axiom R4b, from 0 ∈ RB({0,−u}) we
infer that u ∈ RB({0, u}). Using that 0 ∈ RB({0, u}), we infer that
{0, u} = RB({0, u}), contradicting Axiom R1. Therefore B does not avoid
complete rejection. ♦

Theorem 1. Consider any assessment B ⊆ Q0. Then the following
statements are equivalent:

(i) B avoids complete rejection;
(ii) There is a coherent extension of B: (∃R ∈ R)(∀B ∈ B)0 ∈ R(B);



(iii) E(B) 6= idQ;
(iv) E(B) ∈ R;
(v) E(B) is the least informative rejection function that is coherent and

extends B.
When any of these equivalent statements hold, then E(B) = RB.

4 Connection with desirability

Let us compare our discussion of natural extension with the case of bi-
nary preferences and desirability. A desirability assessment B ⊆ V is
usually (see for instance Section 1.2 of Reference [12], and also Refer-
ence [13]) a set of options that the agent finds desirable—strictly prefers
to the zero option. As we did for choice functions, we pay special atten-
tion to coherent sets of desirable options. The following is an immediate
generalisation of existing coherence definitions [12,13] from gambles to
abstract options.

Definition 5 (Coherent set of desirable options). We call a set of
desirable options D ⊆ V coherent if for all u and v in V and λ in R>0:
D1. 0 /∈ D;
D2. if 0 ≺ u then u ∈ D;
D3. if u ∈ D then λu ∈ D;
D4. if u, v ∈ D then u+ v ∈ D.
We collect all coherent sets of desirable options in the set D(V), often
simply denoted as D when it is clear from the context which vector space
we are using.

Any coherent set of desirable options D gives rise to a coherent rejection
function RD given by RD(A) = {u ∈ A : (∀v ∈ A)v − u /∈ D} for all A
in Q.
Of course, any desirability assessment B ⊆ V can be transformed into
an assessment for rejection functions: we simply assess that 0 is rejected
in the binary choice between 0 and u, for every option u in B. The
assessment based on B is therefore given by BB := {{0, u} : u ∈ B};
clearly B and BB are in a one-to-one correspondence: given an assessment
BB that consist of an arbitrary family of binary option sets, we retrieve
B as B =

⋃
(BB \ {0}) = (

⋃
BB) \ {0}.

Given any desirability assessment B ⊆ V and any set of desirable options
D ⊆ V, we say that D extends B if B ⊆ D. Our next proposition
expresses this in terms of rejection functions.

Proposition 2. Consider any desirability assessment B ⊆ V and any
set of desirable options D ⊆ V. Then D extends B if and only if RD
extends BB .

For desirability, Axioms D2–D4 are the productive ones, while the only
destructive axiom is Axiom D1. The property for desirability that cor-
responds to avoiding complete rejection for choice models, is avoiding
non-positivity, commonly formulated as (see for instance Reference [13,
Definition 1])

posi(B) ∩ V�0 = ∅ (1.2)



for the desirability assessment B ⊆ V. Here, posi stands for ‘positive
hull’, and is defined by

posi(B) :=

{ n∑
k=1

λkuk : n ∈ N, λk ∈ R>0, uk ∈ B
}

⊆ span(B) :=

{ n∑
k=1

λkuk : n ∈ N, λk ∈ R, uk ∈ B
}
⊆ V.

Thm. 1 is the equivalent for choice models of the natural extension the-
orem for desirability. Let us state this natural extension theorem for
desirability.

Theorem 2. [13, Theorem 1] Consider any desirability assessment B ⊆
V, and define its natural extension as

ED(B) := inf{D ∈ D : B ⊆ D}, (1.3)

where we let inf ∅ = V. Then the following statements are equivalent:
(i) B avoids non-positivity;
(ii) B is included in some coherent set of desirable options;

(iii) ED(B) 6= V;
(iv) ED(B) ∈ D;
(v) ED(B) is the least informative set of desirable options that is co-

herent and includes B.
When any of these equivalent statements hold, ED(B) = posi(V�0 ∪B).

Our next result tells us that the procedure of natural extension we have
established for rejection functions is an extension of the procedure of
natural extension for coherent sets of desirable gambles considered above.

Theorem 3. Consider any desirability assessment B ⊆ V. Then B
avoids non-positivity if and only if BB avoids complete rejection, and
if this is the case, then E(BB) = RED(B).

To summarise these statements, consider the commuting diagram in
Fig. 1, where we have used the maps

ED : P(V)→ D : B 7→ ED(B)

B· : P(V)→ Q0 : B 7→ BB := {{0, u} : u ∈ B}

E : P(Q0)→ R : B 7→ E(B)

D· : R→ D : R 7→ DR := {u ∈ V : 0 ∈ R({0, u})}

R· : D→ R : D 7→ RD

Start with a desirability assessment B ⊆ V that avoids non-positivity.
Taking the natural extension for desirability commutes with taking the
corresponding assessment (for choice models), then the natural exten-
sion, and eventually going back to the set of desirable options corre-
sponding to this natural extension. Furthermore, taking the natural ex-
tension of the corresponding assessment (for choice models) commutes
with taking the natural extension for desirability, and then going to the
corresponding rejection function.



B ED(B) = DE(BB )

BB E(BB) = RED(B)

ED

B· D·R·
E

Fig. 1. Commuting diagram for the case of binary assessments

5 Examples

5.1 Choice functions that are no infima of binary choice
functions

Many important choice functions are infima of purely binary choice mod-
els: consider, for instance, the E-admissible or M-admissible choice func-
tions [6]. It is an important question whether all the coherent choice
functions are infima of purely binary choice functions; if this question
answered positively, this would immediately imply a representation the-
orem. If this question is answered in the negative, choice functions would
constitute a theory that is more general than sets of desirable gambles
in two ways: not only because it allows for more than binary choice, also
because it is capable of expressing preferences that can never be retrieved
as an infimum of purely binary preferences.
Below we will answer this question in the negative: we will define a special
rejection function RB, based some particular assessment B ⊆ Q0, and
prove that it is no infimum of purely binary rejection functions.

Example 2. We will work with the special vector space of gambles V = L
on a binary possibility space X = {H,T}, ordered by the standard point-
wise ordering ≤: for any f, g in L, we let f ≤ g ⇔ (∀x ∈ X)f(x) ≤ g(x).
We consider a single assessment B := {B}, where B consists of a gamble
and one scaled variant of it, together with 0: The assessment we consider
is B := {0, f, λf} with f a gamble and λ an element of R>0 and different
from 1. We assume that f(H) < 0 < f(T), and that λ > 1.The idea is
that B consists of 0 and two gambles that lie on the same line through
0, and on the same side of that line; see Fig. 2 for an illustration of the
assessment.
Note that this assessment indeed avoids complete rejection: for instance,
the coherent set of desirable options D := posi(V�0 ∪ {f}) satisfies D ∩
B = {f, λf} 6= ∅. Therefore, RB is a coherent rejection function. To
prove that RB is no infimum of purely binary rejection functions, we
first show the intermediate result that 0 /∈ RB(A), where A := {0, f}. To
prove this, assume ex absurdo that 0 ∈ RB(A), and infer using Eq. (1.1)
that then there would be some A′ ⊇ A in Q such that

(∀h ∈ {0}∪(A′\A))
(
(A′−{h})∩L>0 6= ∅ or (∃µ ∈ R>0){h}+µB 4 A′

)
.

(1.4)



span{f}

H

T

0

f

λf

assessment B:
option set A:

span{f} + L>0

Fig. 2. Illustration of the assessment

At this point, remark already that A′ 6= A: indeed, if ex absurdo A′ =
A, then {0} ∪ (A′ \ A) = {0}, so we need only consider h = 0. Infer
that A′ ∩ L>0 = ∅ and (∀µ ∈ R>0){0, µf, µλf} 64 {0, f}, leading to a
contradiction. Therefore, A′ ⊃ A.
Without loss of generality, we let A′ := {0, f, h1, . . . , hn} ⊃ A where n
belongs to N and h1, . . . , hn to L, so {0} ∪ (A′ \A) = {0, h1, . . . , hn}.
It then follows that (maxA′) ∩ {0, h1, . . . , hn} 6= ∅.
Let us prove as an intermediate result that (maxA′)∩(span{f}+L>0) =
∅. To see this, since {0, f} ∩ (span{f}+L>0) = ∅, infer that (maxA′) ∩
(span{f}+L>0) ⊆ {h1, . . . , hn}, and assume ex absurdo that (maxA′)∩
(span{f} + L>0) 6= ∅. Let h be an element of arg max{g(T) : g ∈
(maxA′) ∩ (span{f} + L>0)}, then h(T) + µλf(T) > h(T), so h +
µλf ∈ {h}+ µB is undominated in (maxA′)∩ (span{f}+L>0) whence
{h}+µB 64 (maxA′)∩(span{f}+L>0) for all µ in R>0. Note that, since
h belongs to span{f}+L>0, also h+ µλf belongs to span{f}+L>0 for
every µ in R>0. Therefore, since an element of span{f}+L>0 can never
be dominated by an element of (span{f}+L>0)c = span{f}+L≤0,also
{h}+µB 64 maxA′ for all µ in R>0. We deduce that also {h}+µB 64 A′
for all µ in R>0. Since h belongs to maxA′, also A′ − {h} ∩ L>0 = ∅,
a contradiction. So we have that (maxA′) ∩ (span{f} + L>0) = ∅, and
therefore, again because an element of span{f}+L>0 can never be dom-
inated by an element of span{f}+ L≤0, also A′ ∩ (span{f}+ L>0) = ∅.
Now we go back to Eq. (1.4), and consider first h = 0. Then A′∩L>0 6= ∅
or (∃µ ∈ R>0)µB 4 A′. Since A′ ∩ (span{f} + L>0) = ∅, in particular
A′ ∩ L>0 = ∅, so the only possibility left is (∃µ ∈ R>0)µB 4 A′, or, in
other words, {0, µf, µλf} 4 {0, f, h1, . . . , hn} for some µ in R>0. There
are three possibilities: if (i) µ = 1, then hi ≥ λf—and therefore, since
A′ ∩ (span{f}+L>0) = ∅, necessarily hi = λf—for some i in {1, . . . , n};
if (ii) µ = 1

λ
then hj ≥ 1

λ
f—and therefore, since A′∩ (span{f}+L>0) =

∅, necessarily hj = 1
λ
f—for some j in {1, . . . , n}; and finally, if (iii)

µ /∈ { 1
λ
, 1}, then hk ≥ µf and h` ≥ µλf—and therefore, since A′ ∩

(span{f} + L>0) = ∅, necessarily hk = µf and h` = µλf—for some k
and ` in {1, . . . , n}.
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1
λ
B: A:

H

T

0

µf

µλf
f

hk

h`

(iii): µ /∈ { 1
λ
, 1}

µB: A:

Fig. 3. Illustration of the three different cases mentioned

In any case, we find that {h1, . . . , hn} ∩ posi{f} 6= ∅. Without loss of
generality, let h1 be the unique gamble in {h1, . . . , hn} ∩ posi{f} with
highest value in T: {h1} = arg max{g(T) : g ∈ {h1, . . . , hn} ∩ posi{f}}.
Then, since h1 ∈ {0}∪ (A′ \A), by Eq. (1.4), we have that (A′−{h1})∩
L>0 6= ∅ or (∃µ ∈ R>0){h1}+ µB 4 A′. Since A′ ∩ (span{f}+L>0) = ∅
and h1 ∈ posi{f}, we find in particular A′ ∩ ({h1} + L>0) = ∅, whence
(A′ − {h1}) ∩ L>0 = ∅. Therefore necessarily {h1, h1 + µf, h1 + µλf} =
{h1}+µB 4 A′ for some µ in R>0. Note that both h1 +µf and h1 +µλf
belong to posi{f}, and have a value in T that is strictly higher than
h1(T). But at least one of h1 + µf or h1 + µλf is not equal to f , and
therefore an element of {h1, . . . , hn} ∩ posi{f}, a contradiction with the
fact that h1 ∈ arg max{g(T) : g ∈ {h1, . . . , hn} ∩ posi{f}}. Therefore
indeed 0 /∈ RB(A).
So we have found a rejection function RB such that 0 ∈ RB({0, f, λf})
but 0 /∈ RB({0, f}). However, any rejection function RD that is defined
by means of a coherent set of desirable options D satisfies that

0 ∈ RD({0, f, λf})⇔ 0 ∈ RD({0, f}), (1.5)

and Eq. (1.5) is preserved when taking infima of rejection functions. As
a consequence, RB is no infimum of purely binary rejection functions. ♦

5.2 Natural extension and indifference

Next we investigate if it is possible to obtain an extension of a given
assessment that takes into account not only the implications of coher-
ence, as we did with the natural extension, but also some assessments of
indifference between a set of options. To see how this comes about, note
that, in addition to a subject’s set of desirable options D—the options he
strictly prefers to the zero option—we can also consider the options that
he considers to be equivalent to the zero option. We call these options
indifferent. A set of indifferent options I is simply a subset of V, but as
before with desirable options, we pay special attention to coherent sets
of indifferent options.



Definition 6. A set of indifferent options I is called coherent if for all
u, v in V and λ in R:
I1. 0 ∈ I;
I2. if u ∈ V�0 ∪ V≺0 then u /∈ I;
I3. if u ∈ I then λu ∈ I;
I4. if u, v ∈ I then u+ v ∈ I.

Taken together, Axioms I3 and I4 are equivalent to span(I) = I, and due
to Axiom I1, I is non-empty and therefore a linear subspace of V.
The interaction between indifferent and desirable options is subject to
rationality criteria as well: they should be compatible with one another.

Definition 7. Given a set of desirable options D and a coherent set of
indifferent options I, we call D compatible with I if D + I ⊆ D.

We collect all options that are indifferent to an option u ∈ V into the
equivalence class [u] := {v ∈ V : v − u ∈ I} = {u} + I. We also denote
[u] as u/I. Of course, [0] = {0} + I = I is a linear subspace, and the
[u] = {u} + I are affine subspaces of V. The set of all these equivalence
classes is the quotient space V/I := {[u] : u ∈ V} = {{u}+ I : u ∈ V} =
{u/I : u ∈ V}. This quotient space is a vector space under the vector
addition and the scalar multiplication. [0] = I is the additive identity
of V/I.

Definition 8. We call a rejection function R on Q(V) compatible with a
coherent set of indifferent options I if there is some representing rejection
function R′ on Q(V/I) such that R(A) = {u ∈ A : [u] ∈ C′(A/I)} for
all A in Q(V).

We refer to an earlier paper [6] of ours for a study of the compatibility
of the structural assessment of coherence with the theory of coherent
rejection functions, and to [14,15] for other works on this topic.
The natural extension under indifference, if it is coherent, is the least
informative coherent rejection function that extends the assessment B ⊆
Q0(V) and is compatible with the set of indifferent options I.

Definition 9. Given any assessment B ⊆ Q0(V) and any coherent set of
indifferent options I, the natural extension of B under I is the rejection
function

EI(B) := inf{R ∈ R(V) : R extends B and is compatible with I},

where, as usual, we let inf ∅ = idQ(V), the identity rejection function that
maps every option set of itself.

To help link this definition with a more constructive and explicit expres-
sion, consider the special rejection function RB,I , defined by:

RB,I(A) := {u ∈ A : [u] ∈ RB/I(A/I)} for all A in Q(V), (1.6)

where we let B/I := {B/I : B ∈ B} ⊆ Q[0](V/I), being—loosely
speaking—the assessment B expressed in the quotient space V/I. Re-
call that RB, as defined in Eq. (1.1), is relative to a given but otherwise
arbitrary vector space V. Our special rejection function RB,I uses the
version RB/I on V/I instead of V.
The following is the counterpart of Prop. 1 under indifference:



Proposition 3. Consider any assessment B ⊆ Q0(V) and any coherent
set of indifferent options I ⊆ V. Then RB,I is the least informative rejec-
tion function that satisfies Axioms R2–R4, extends B, and is compatible
with I.

Recall from our results on the (normal) natural extension that not every
assessment is extendible to a coherent rejection function: this is only the
case if the assessment avoids complete rejection. Here too, when we deal
with the natural extension under indifference, something similar occurs.

Definition 10 (Avoiding complete rejection under indifference).
Given any assessment B ⊆ Q0(V) and any coherent set of indifferent op-
tions I ⊆ V, we say that B avoids complete rejection under I when RB,I
satisfies Axiom R1.

However, and perhaps surprisingly, avoiding complete rejection under
indifference is sufficient for avoiding complete rejection:

Proposition 4. Consider any assessment B ⊆ Q0(V) and any coherent
set if indifferent options I ⊆ V. Then B avoids complete rejection under
I if and only if B/I avoids complete rejection, and both those equivalent
conditions imply that B avoids complete rejection.

This allows us to formulate a counterpart to Thm. 1 for natural extension
under indifference:

Theorem 4. Consider any assessment B ⊆ Q0 and any coherent set of
indifferent options I ⊆ V. Then the following statements are equivalent:

(i) B avoids complete rejection under I;
(ii) There is some R in R(V) that extends B that is compatible with

I, meaning that (∀B ∈ B)0 ∈ R(B) and

(∀A ∈ Q(V))R(A) = {u ∈ A : [u] ∈ R(A)/I};

(iii) EI(B) 6= idQ(V);
(iv) EI(B) ∈ R(V);
(v) EI(B) is the least informative rejection function that is coherent,

extends B, and is compatible with I.
When any of these equivalent statements hold, then EI(B) = RB,I .

6 Conclusions

In this paper, we have investigated the natural extension of choice func-
tions, found an expression for it, and characterised the assessments that
have coherent extensions. We made the connection with binary choice,
and showed how the well-known natural extension for desirability follows
from our natural extension.
As future lines of research, we would like to study the compatibility of
the notion of natural extension with other structural assessments; in this
respect, we have already investigated the compatibility with a notion of
irrelevance when modelling multivariate choice functions. It is an open
problem to study whether something similar can be made with respect
to the exchangeable choice functions we have considered in [16].
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