12 research outputs found

    Collisional effects in the formation of cold guided beams of polar molecules

    Full text link
    High fluxes of cold polar molecules are efficiently produced by electric guiding and velocity filtering. Here, we investigate different aspects of the beam formation. Variations of the source parameters such as density and temperature result in characteristic changes in the guided beam. These are observed in the velocity distribution of the guided molecules as well as in the dependence of the signal of guided molecules on the trapping electric field. A model taking into account velocity-dependent collisional losses of cold molecules in the region close to the nozzle accurately reproduces this behavior. This clarifies an open question on the parameter dependence of the detected signal and gives a more detailed understanding of the velocity filtering and guiding process

    Sisyphus Cooling of Electrically Trapped Polyatomic Molecules

    Full text link
    The rich internal structure and long-range dipole-dipole interactions establish polar molecules as unique instruments for quantum-controlled applications and fundamental investigations. Their potential fully unfolds at ultracold temperatures, where a plethora of effects is predicted in many-body physics, quantum information science, ultracold chemistry, and physics beyond the standard model. These objectives have inspired the development of a wide range of methods to produce cold molecular ensembles. However, cooling polyatomic molecules to ultracold temperatures has until now seemed intractable. Here we report on the experimental realization of opto-electrical cooling, a paradigm-changing cooling and accumulation method for polar molecules. Its key attribute is the removal of a large fraction of a molecule's kinetic energy in each step of the cooling cycle via a Sisyphus effect, allowing cooling with only few dissipative decay processes. We demonstrate its potential by reducing the temperature of about 10^6 trapped CH_3F molecules by a factor of 13.5, with the phase-space density increased by a factor of 29 or a factor of 70 discounting trap losses. In contrast to other cooling mechanisms, our scheme proceeds in a trap, cools in all three dimensions, and works for a large variety of polar molecules. With no fundamental temperature limit anticipated down to the photon-recoil temperature in the nanokelvin range, our method eliminates the primary hurdle in producing ultracold polyatomic molecules. The low temperatures, large molecule numbers and long trapping times up to 27 s will allow an interaction-dominated regime to be attained, enabling collision studies and investigation of evaporative cooling toward a BEC of polyatomic molecules

    Towards intrinsic R2* imaging in the prostate at 3 and 7tesla

    No full text
    PURPOSE: Hypoxia is an important marker for resistance to therapy. In this study, we quantify the macroscopic effects of R2* mapping in prostate cancer patients incorporating susceptibility matching and field strengths effects. MATERIALS AND METHODS: 91 patients were scanned without endorectal coil (ERC) at 3T. Only when rectal gas was absent, data was included for analysis. Another group of 10 patients was scanned using a susceptibility matched ERC. To assess the residual contamination of R2 and macroscopic field non-uniformities, a group of 10 patients underwent ultra-high resolution 7T MRI. RESULTS: Of the patients scanned at 3T 60% presented rectal gas and were excluded, due to susceptibility artifacts. At 3T the tumor was significantly different (P<0.01) from the healthy surrounding tissue in R2* values at intrapatient level. Using the measured median R2* value of 24.9s(-1) at 3T and 43.2s(-1) at 7T of the peripheral zone, the minimum contribution of macroscopic susceptibility effects is 15% at 3T. CONCLUSION: R2* imaging might be a promising tool for hypoxia imaging, particularly when minimizing macroscopic susceptibility effects contaminating intrinsic R2* of tissue, such as rectal gas. At 3T macroscopic effects still contribute 15% in the R2* value, compared to ultra-high resolution R2* mapping at 7T

    Prostate fiducial marker detection with the use of multi-parametric magnetic resonance imaging

    No full text
    Background and purpose: The introduction of a magnetic resonance (MR)-only workflow in radiotherapy requires that fiducial markers, used for position verification, can be detected on MR images. Here we evaluate a model for marker detection in prostate cancer patients by combining information from our hospital standard multi-parametric (mp-) MRI protocol (T1-weighted – T1w, T2-weighted – T2w, B0) with dedicated sequences (balanced steady-state free precession sequence – bTFE, susceptibility weighted imaging – SWI). Materials and methods: Thirty two patients scheduled for external-beam radiotherapy received a mp-MRI and computed-tomography; the latter was used as ground truth location of the markers. A logistic regression model was implemented for marker detection by combining features from all imaging sequences. The performance of the individual and combined sequences was assessed by determining true and false positive detections. Results: The combination of different sequences (mp-MRI) resulted in a better performance than the best imaging sequence alone (bTFE). Combining mp-MRI + bTFE resulted in good accuracy and a true positive detection rate of 0.94. Conclusions: The standard mp-MRI provides valuable information to detect fiducial markers. The combination of different sequences outperforms the use of a single dedicated sequence. We recommend the addition of a bTFE to the standard mp-MRI protocol to improve fiducial marker detection. Keywords: Prostate cancer, External beam radiotherapy, Fiducial markers, Multi-parametric MR

    Significant tumor shift in patients treated with stereotactic radiosurgery for brain metastasis

    No full text
    Introduction: Linac-based stereotactic radiosurgery (SRS) for brain metastases may be influenced by the time interval between treatment preparation and delivery, related to risk of anatomical changes. We studied tumor position shifts and its relations to peritumoral volume edema changes over time, as seen on MRI. Methods: Twenty-six patients who underwent SRS for brain metastases in our institution were included. We evaluated the occurrence of a tumor shift between the diagnostic MRI and radiotherapy planning MRI. For 42 brain metastases the tumor and peritumoral edema were delineated on the contrast enhanced T1weighted and FLAIR images of both the diagnostic MRI and planning MRI examinations. Centre of Mass (CoM) shifts and tumor borders were evaluated. We evaluated the influence of steroids on peritumoral edema and tumor volume and the correlation with CoM and tumor border changes. Results: The median values of the CoM shifts and of the maximum distances between the tumor borders obtained from the diagnostic MRI and radiotherapy planning MRI were 1.3 mm (maximum shift of 5.0 mm) and 1.9 mm (maximum distance of 7.4 mm), respectively. We found significant correlations between the absolute change in edema volume and the tumor shift of the CoM (p < 0.001) and tumor border (p = 0.040). Patients who received steroids did not only had a decrease in peritumoral edema, but also had a median decrease in tumor volume of 0.02 cc while patients who did not receive steroids had a median increase of 0.06 cc in tumor volume (p = 0.035). Conclusion: Our results show that large tumor shifts of brain metastases can occur over time. Because shifts may have a significant impact on the local dose coverage, we recommend minimizing the time between treatment preparation and delivery for Linac based SRS

    Feasibility and accuracy of quantitative imaging on a 1.5 T MR-linear accelerator

    No full text
    PURPOSE: Systems for magnetic resonance (MR-) guided radiotherapy enable daily MR imaging of cancer patients during treatment, which is of interest for treatment response monitoring and biomarker discovery using quantitative MRI (qMRI). Here, the performance of a 1.5 T MR-linac regarding qMRI was assessed on phantoms. Additionally, we show the feasibility of qMRI in a prostate cancer patient on this system for the first time. MATERIALS AND METHODS: Four 1.5 T MR-linac systems from four institutes were included in this study. T1 and T2 relaxation times, and apparent diffusion coefficient (ADC) maps, as well as dynamic contrast enhanced (DCE) images were acquired. Bland-Altman statistics were used, and accuracy, repeatability, and reproducibility were determined. RESULTS: Median accuracy for T1 ranged over the four systems from 2.7 to 14.3%, for T2 from 10.4 to 14.1%, and for ADC from 1.9 to 2.7%. For DCE images, the accuracy ranged from 12.8 to 35.8% for a gadolinium concentration of 0.5 mM and deteriorated for higher concentrations. Median short-term repeatability for T1 ranged from 0.6 to 5.1%, for T2 from 0.4 to 1.2%, and for ADC from 1.3 to 2.2%. DCE acquisitions showed a coefficient of variation of 0.1-0.6% in the signal intensity. Long-term repeatability was 1.8% for T1, 1.4% for T2, 1.7% for ADC, and 17.9% for DCE. Reproducibility was 11.2% for T1, 2.9% for T2, 2.2% for ADC, and 18.4% for DCE. CONCLUSION: These results indicate that qMRI on the Unity MR-linac is feasible, accurate, and repeatable which is promising for treatment response monitoring and treatment plan adaptation based on daily qMRI
    corecore