339 research outputs found

    Effects of yawed inflow on the aerodynamic and aeroacoustic performance of ducted wind turbines

    Get PDF
    Ducted Wind Turbines (DWTs) can be used for energy harvesting in urban areas where non-uniform inflows might be the cause of aerodynamic and acoustic performance degradation. For this reason, an aerodynamic and aero-acoustic analysis of DWTs in yawed inflow condition is performed for two duct geometries: a baseline commercial DWT model, DonQi®, and one with a duct having a higher cross-section camber with respect to the baseline, named DonQi D5. The latter has been obtained from a previous optimization study. A numerical investigation using Lattice-Boltzmann Very-Large-Eddy Simulations is presented. Data confirm that the aerodynamic performance improvement, i.e. increase of the power coefficient, is proportional to the increase of the duct thrust force coefficient. It is found that, placing the DWT at a yaw angle of 7.5 , the aerodynamic performances of the DonQi D5 DWT model are less affected by the yaw angle. On the other hand, this configuration shows an increase of broadband noise with respect to the baseline DonQi® one, both in non-yawed and yawed inflow conditions. This is associated to turbulent boundary layer trailing edge noise due to the turbulent flow structures developing along the surface of the duct

    Aeroservoelastic design definition of a 20 MW common research wind turbine model

    Full text link
    Wind turbine upscaling is motivated by the fact that larger machines can achieve lower levelized cost of energy. However, there are several fundamental issues with the design of such turbines, and there is little public data available for large wind turbine studies. To address this need, we develop a 20 MW common research wind turbine design that is available to the public. Multidisciplinary design optimization is used to define the aeroservoelastic design of the rotor and tower subject to the following constraints: blade‐tower clearance, structural stresses, modal frequencies, tip‐speed and fatigue damage at several sections of the tower and blade. For the blade, the design variables include blade length, twist and chord distribution, structural thicknesses distribution and rotor speed at the rated. The tower design variables are the height, and the diameter distribution in the vertical direction. For the other components, mass models are employed to capture their dynamic interactions. The associated cost of these components is obtained by using cost models. The design objective is to minimize the levelized cost of energy. The results of this research show the feasibility of a 20 MW wind turbine and provide a model with the corresponding data for wind energy researchers to use in the investigation of different aspects of wind turbine design and upscaling. Copyright © 2016 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134256/1/we1970.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134256/2/we1970_am.pd

    Insights into innovative contract design to improve the integration of biodiversity and ecosystem services in agricultural management

    Get PDF
    Funding Information: This publication is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 818190. The authors thank the reviewers for their valuable comments and suggestions, which considerably improved an earlier version of the manuscript. We also appreciate the support of Bettina Matzdorf, C?line Dutilly, Edward Ott, Jennifer Dodsworth, Katarzyna Zagorska, Lisa Deijl, Rena Barghusen, Salomon Espinosa Diaz and Sven Defrijn from the Contracts2.0 team.Peer reviewedPublisher PD

    Beyond the plot: technology extrapolation domains for scaling out agronomic science

    Get PDF
    Ensuring an adequate food supply in systems that protect environmental quality and conserve natural resources requires productive and resource-efficient cropping systems on existing farmland.Meeting this challenge will be difficult without a robust spatial framework that facilitates rapid evaluation and scaling-out of currently available and emerging technologies. Here we develop a global spatial framework to delineate ‘technology extrapolation domains’ based on key climate and soil factors that govern crop yields and yield stability in rainfed crop production. The proposed framework adequately represents the spatial pattern of crop yields and stability when evaluated over the data-rich US Corn Belt. It also facilitates evaluation of cropping system performance across continents, which can improve efficiency of agricultural research that seeks to intensify production on existing farmland. Populating this biophysical spatial framework with appropriate socio-economic attributes provides the potential to amplify the return on investments in agricultural research and development by improving the effectiveness of research prioritization and impact assessment

    Can Bangladesh produce enough cereals to meet future demand?

    Get PDF
    Bangladesh faces huge challenges in achieving food security due to its high population, diet changes, and limited room for expanding cropland and cropping intensity. The objective of this study is to assess the degree to which Bangladesh can be self-sufficient in terms of domestic maize, rice and wheat production by the years 2030 and 2050 by closing the existing gap (Yg) between yield potential (Yp) and actual farm yield (Ya), accounting for possible changes in cropland area. Yield potential and yield gaps were calculated for the three crops using well-validated crop models and site-specific weather,management and soil data, and upscaled to the whole country.We assessed potential grain production in the years 2030 and 2050 for six land use change scenarios (general decrease in arable land; declining ground water tables in the north; cropping of fallow areas in the south; effect of sea level rise; increased cropping intensity; and larger share of cash crops) and three levels of Yg closure (1: no yield increase; 2: Yg closure at a level equivalent to 50% (50% Yg closure); 3: Yg closure to a level of 85% of Yp (irrigated crops) and 80% of water-limited yield potential or Yw (rainfed crops) (full Yg closure)). In addition, changes in demand with low and high population growth rates, and substitution of rice by maize in future diets were also examined. Total aggregated demand of the three cereals (in milled rice equivalents) in 2030 and 2050, based on the UN median population variant, is projected to be 21 and 24% higher than in 2010. Current Yg represent 50% (irrigated rice), 48–63% (rainfed rice), 49% (irrigated wheat), 40% (rainfed wheat), 46% (irrigated maize), and 44% (rainfed maize) of their Yp or Yw.With 50% Yg closure and for various land use changes, self-sufficiency ratio will be N1 for rice in 2030 and about one in 2050 but well below one for maize and wheat in both 2030 and 2050. With full Yg closure, self-sufficiency ratios will be well above one for rice and all three cereals jointly but below one for maize and wheat for all scenarios, except for the scenario with drastic decrease in boro rice area to allow for area expansion for cash crops. Full Yg closure of all cereals is needed to compensate for area decreases and demand increases, and then even some maize and large amounts of wheat imports will be required to satisfy demand in future. The results of this analysis have important implications for Bangladesh and other countries with high population growth rate, shrinking arable land due to rapid urbanization, and highly vulnerable to climate change

    Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa

    Get PDF
    In rainfed crop production, root zone plant-available water holding capacity (RZ-PAWHC) of the soil has a large influence on crop growth and the yield response to management inputs such as improved seeds and fertilisers. However, data are lacking for this parameter in sub-Saharan Africa (SSA). This study produced the first spatially explicit, coherent and complete maps of the rootable depth and RZ-PAWHC of soil in SSA. We compiled georeferenced data from 28,000 soil profiles from SSA, which were used as input for digital soil mapping (DSM) techniques to produce soil property maps of SSA. Based on these soil properties, we developed and parameterised (pedotransfer) functions, rules and criteria to evaluate soil water retention at field capacity and wilting point, the soil fine earth fraction from coarse fragments content and, for maize, the soil rootability (relative to threshold values) and rootable depth. Maps of these secondary soil properties were derived using the primary soil property maps as input for the evaluation rules and the results were aggregated over the rootable depth to obtain a map of RZ-PAWHC, with a spatial resolution of 1 km2. The mean RZ-PAWHC for SSA is 74mm and the associated average root zone depth is 96 cm. Pearson correlation between the two is 0.95. RZ-PAWHC proves most limited by the rootable depth but is also highly sensitive to the definition of field capacity. The total soil volume of SSA potentially rootable by maize is reduced by one third (over 10,500 km3) due to soil conditions restricting root zone depth. Of these, 4800 km3 are due to limited depth of aeration, which is the factor most severely limiting in terms of extent (km2), and 2500 km3 due to sodicity which is most severely limiting in terms of degree (depth in cm). Depth of soil to bedrock reduces the rootable soil volume by 2500 km3, aluminium toxicity by 600 km3, porosity by 120 km3 and alkalinity by 20 km3. The accuracy of the map of rootable depth and thus of RZ-PAWHC could not be validated quantitatively due to absent data on rootability and rootable depth but is limited by the accuracy of the primary soil property maps. The methodological framework is robust and has been operationalised such that the maps can easily be updated as additional data become available
    corecore