64 research outputs found
Dynamics of the serologic response in vaccinated and unvaccinated mumps cases during an epidemic
In the last decade, several mumps outbreaks were reported in various countries despite high vaccination coverage. In most cases,
Virus neutralization assays for human respiratory syncytial virus using airway organoids
Neutralizing antibodies are considered a correlate of protection against severe human respiratory syncytial virus (HRSV) disease. Currently, HRSV neutralization assays are performed on immortalized cell lines like Vero or A549 cells. It is known that assays on these cell lines exclusively detect neutralizing antibodies (nAbs) directed to the fusion (F) protein. For the detection of nAbs directed to the glycoprotein (G), ciliated epithelial cells expressing the cellular receptor CX3CR1 are required, but generation of primary cell cultures is expensive and labor-intensive. Here, we developed a high-throughput neutralization assay based on the interaction between clinically relevant HRSV grown on primary cells with ciliated epithelial cells, and validated this assay using a panel of infant sera. To develop the high-throughput neutralization assay, we established a culture of differentiated apical-out airway organoids (Ap-O AO). CX3CR1 expression was confirmed, and both F- and G-specific monoclonal antibodies neutralized HRSV in the Ap-O AO. In a side-by-side neutralization assay on Vero cells and Ap-O AO, neutralizing antibody levels in sera from 125 infants correlated well, although titers on Ap-O AO were consistently lower. We speculate that these lower titers might be an actual reflection of the neutralizing antibody capacity in vivo. The organoid-based neutralization assay described here holds promise for further characterization of correlates of protection against HRSV disease.</p
Epidemic of mumps among vaccinated persons, the Netherlands, 2009-2012
To analyze the epidemiology of a nationwide mumps epidemic in the Netherlands, we reviewed 1,557 notified mumps cases in persons who had disease onset during September 1, 2009-August 31, 2012. Seasonality peaked in sprin
Differences in antigenic sites and other functional regions between genotype A and G mumps virus surface proteins
The surface proteins of the mumps virus, the fusion protein (F) and haemagglutinin-neuraminidase (HN), are key factors in mumps pathogenesis and are important targets for the immune response during mumps virus infection. We compared the predicted amino acid sequences of the F and HN genes from Dutch mumps virus samples from the pre-vaccine era (1957–1982) with mumps virus genotype G strains (from 2004 onwards). Genotype G is the most frequently detected mumps genotype in recent outbreaks in vaccinated communities, especially in Western Europe, the USA and Japan. Amino acid differences between the Jeryl Lynn vaccine strains (genotype A) and genotype G strains were predominantly located in known B-cell epitopes and in N-linked glycosylation sites on the HN protein. There were eight variable amino acid positions specific to genotype A or genotype G sequences in five known B-cell epitopes of the HN protein. These differences may account for the reported antigenic differences between Jeryl Lynn and genotype G strains. We also found amino acid differences in and near sites on the HN protein that have been reported to play a role in mumps virus pathogenesis. These differences may contribute to the occurrence of genotype G outbreaks in vaccinated communities
Immune Response following BNT162b2 mRNA COVID-19 Vaccination in Pediatric Cancer Patients
COVID-19 vaccinations are recommended for children with cancer but data on their vaccination response is scarce. This study assesses the antibody and T-cell response following a 2- or 3-dose vaccination with BNT162b2 mRNA COVID-19 vaccine in children (5-17 years) with cancer. For the antibody response, participants with a serum concentration of anti-SARS-CoV-2 spike 1 antibodies of >300 binding antibody units per milliliter were classified as good responders. For the T-cell response, categorization was based on spike S1 specific interferon-gamma release with good responders having >200 milli-international units per milliliter. The patients were categorized as being treated with chemo/immunotherapy for less than 6 weeks (Tx 6 weeks) before the first immunization event. In 46 patients given a 2-dose vaccination series, the percentage of good antibody and good T-cell responders was 39.3% and 73.7% in patients with Tx 6 weeks, respectively. An additional 3rd vaccination in 16 patients with Tx < 6 weeks, increased the percentage of good antibody responders to 70% with no change in T-cell response. A 3-dose vaccination series effectively boosted antibody levels and is of value for patients undergoing active cancer treatment
mRNA-1273 COVID-19 vaccination in patients receiving chemotherapy, immunotherapy, or chemoimmunotherapy for solid tumours:a prospective, multicentre, non-inferiority trial
BACKGROUND: Patients with cancer have an increased risk of complications from SARS-CoV-2 infection. Vaccination to prevent COVID-19 is recommended, but data on the immunogenicity and safety of COVID-19 vaccines for patients with solid tumours receiving systemic cancer treatment are scarce. Therefore, we aimed to assess the impact of immunotherapy, chemotherapy, and chemoimmunotherapy on the immunogenicity and safety of the mRNA-1273 (Moderna Biotech, Madrid, Spain) COVID-19 vaccine as part of the Vaccination Against COVID in Cancer (VOICE) trial. METHODS: This prospective, multicentre, non-inferiority trial was done across three centres in the Netherlands. Individuals aged 18 years or older with a life expectancy of more than 12 months were enrolled into four cohorts: individuals without cancer (cohort A [control cohort]), and patients with solid tumours, regardless of stage and histology, treated with immunotherapy (cohort B), chemotherapy (cohort C), or chemoimmunotherapy (cohort D). Participants received two mRNA-1273 vaccinations of 100 μg in 0·5 mL intramuscularly, 28 days apart. The primary endpoint, analysed per protocol (excluding patients with a positive baseline sample [>10 binding antibody units (BAU)/mL], indicating previous SARS-CoV-2 infection), was defined as the SARS-CoV-2 spike S1-specific IgG serum antibody response (ie, SARS-CoV-2-binding antibody concentration of >10 BAU/mL) 28 days after the second vaccination. For the primary endpoint analysis, a non-inferiority design with a margin of 10% was used. We also assessed adverse events in all patients who received at least one vaccination, and recorded solicited adverse events in participants who received at least one vaccination but excluding those who already had seroconversion (>10 BAU/mL) at baseline. This study is ongoing and is registered with ClinicalTrials.gov, NCT04715438. FINDINGS: Between Feb 17 and March 12, 2021, 791 participants were enrolled and followed up for a median of 122 days (IQR 118 to 128). A SARS-CoV-2-binding antibody response was found in 240 (100%; 95% CI 98 to 100) of 240 evaluable participants in cohort A, 130 (99%; 96 to >99) of 131 evaluable patients in cohort B, 223 (97%; 94 to 99) of 229 evaluable patients in cohort C, and 143 (100%; 97 to 100) of 143 evaluable patients in cohort D. The SARS-CoV-2-binding antibody response in each patient cohort was non-inferior compared with cohort A. No new safety signals were observed. Grade 3 or worse serious adverse events occurred in no participants in cohort A, three (2%) of 137 patients in cohort B, six (2%) of 244 patients in cohort C, and one (1%) of 163 patients in cohort D, with four events (two of fever, and one each of diarrhoea and febrile neutropenia) potentially related to the vaccination. There were no vaccine-related deaths. INTERPRETATION: Most patients with cancer develop, while receiving chemotherapy, immunotherapy, or both for a solid tumour, an adequate antibody response to vaccination with the mRNA-1273 COVID-19 vaccine. The vaccine is also safe in these patients. The minority of patients with an inadequate response after two vaccinations might benefit from a third vaccination. FUNDING: ZonMw, The Netherlands Organisation for Health Research and Development
Decreased antibody response after severe acute respiratory syndrome coronavirus 2 vaccination in patients with Down syndrom
The risk of a severe course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in adults with Down syndrome is increased, resulting in an up to 10-fold increase in mortality, in particular in those >40 years of age. After primary SARS-CoV-2 vaccination, the higher risks remain. In this prospective observational cohort study, SARS-CoV-2 spike S1-specific antibody responses after routine SARS-CoV-2 vaccination (BNT162b2, messenger RNA [mRNA]-1273, or ChAdOx1) in adults with Down syndrome and healthy controls were compared. Adults with Down syndrome showed lower antibody concentrations after 2 mRNA vaccinations or after 2 ChAdOx1 vaccinations. After 2 mRNA vaccinations, lower antibody concentrations were seen with increasing age. In this prospective cohort study that included 222 adults with Down syndrome, a significantly lower antibody response was found after SARS-CoV-2 mRNA or vector vaccination compared to healthy controls. After mRNA vaccination, lower antibodies were found with increasing age
An evaluation of COVID-19 serological assays informs future diagnostics and exposure assessment
The world is entering a new era of the COVID-19 pandemic in which there is an increasing call for reliable antibody testing. To support decision making on the deployment of serology for either population screening or diagnostics, we present a detailed comparison of serological COVID-19 assays. We show that among the selected assays there is a wide diversity in assay performance in different scenarios and when correlated to virus neutralizing antibodies. The Wantai ELISA detecting total immunoglobulins against the receptor binding domain of SARS CoV-2, has the best overall characteristics to detect functional antibodies in different stages and severity of disease, including the potential to set a cut-off indicating the presence of protective antibodies. The large variety of available serological assays requires proper assay validation before deciding on deployment of assays for specific applications
Decreased Antibody Response After Severe Acute Respiratory Syndrome Coronavirus 2 Vaccination in Patients With Down Syndrome
UNLABELLED: The risk of a severe course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in adults with Down syndrome is increased, resulting in an up to 10-fold increase in mortality, in particular in those >40 years of age. After primary SARS-CoV-2 vaccination, the higher risks remain. In this prospective observational cohort study, SARS-CoV-2 spike S1-specific antibody responses after routine SARS-CoV-2 vaccination (BNT162b2, messenger RNA [mRNA]-1273, or ChAdOx1) in adults with Down syndrome and healthy controls were compared. Adults with Down syndrome showed lower antibody concentrations after 2 mRNA vaccinations or after 2 ChAdOx1 vaccinations. After 2 mRNA vaccinations, lower antibody concentrations were seen with increasing age. CLINICAL TRIALS REGISTRATION: NCT05145348
- …