9 research outputs found

    SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning-specific memory traces

    Get PDF
    Neurons store information by changing synaptic input weights. In addition, they can adjust their membrane excitability to alter spike output. Here, we demonstrate a role of such "intrinsic plasticity" in behavioral learning in a mouse model that allows us to detect specific consequences of absent excitability modulation. Mice with a Purkinje-cell-specific knockout (KO) of the calcium-activated K+ channel SK2 (L7-SK2) show intact vestibulo-ocular reflex (VOR) gain adaptation but impaired eyeblink conditioning (EBC), which relies on the ability to establish associations between stimuli, with the eyelid closure itself depending on a transient suppression of spike firing. In these mice, the intrinsic plasticity of Purkinje cells is prevented without affecting long-term depression or potentiation at their parallel fiber (PF) input. In contrast to the typical spike pattern of EBC-supporting zebrin-negative Purkinje cells, L7-SK2 neurons show reduced background spiking but enhanced excitability. Thus, SK2 plasticity and excitability modulation are essential for specific forms of motor learning

    Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors

    Get PDF
    CD25 is expressed at high levels on regulatory T (Treg) cells and was initially proposed as a target for cancer immunotherapy. However, anti-CD25 antibodies have displayed limited activity against established tumors. We demonstrated that CD25 expression is largely restricted to tumor-infiltrating Treg cells in mice and humans. While existing anti-CD25 antibodies were observed to deplete Treg cells in the periphery, upregulation of the inhibitory Fc gamma receptor (FcγR) IIb at the tumor site prevented intra-tumoral Treg cell depletion, which may underlie the lack of anti-tumor activity previously observed in pre-clinical models. Use of an anti-CD25 antibody with enhanced binding to activating FcγRs led to effective depletion of tumor-infiltrating Treg cells, increased effector to Treg cell ratios, and improved control of established tumors. Combination with anti-programmed cell death protein-1 antibodies promoted complete tumor rejection, demonstrating the relevance of CD25 as a therapeutic target and promising substrate for future combination approaches in immune-oncology

    Manual QT interval measurement with a smartphone-operated single-lead ECG versus 12-lead ECG: A within-patient diagnostic validation study in primary care

    No full text
    Objective To determine the accuracy of QT measurement in a smartphone-operated, single-lead ECG (1L-ECG) device (AliveCor KardiaMobile 1L). Design Cross-sectional, within-patient diagnostic validation study. Setting/participants Patients underwent a 12-lead ECG (12L-ECG) for any non-acute indication in primary care, April 2017-July 2018. Intervention Simultaneous recording of 1L-ECGs and 12L-ECGs with blinded manual QT assessment. Outcomes of interest (1) Difference in QT interval in milliseconds (ms) between the devices; (2) measurement agreement between the devices (excellent agreement <20 ms and clinically acceptable agreement <40 ms absolute difference); (3) sensitivity and specificity for detection of extreme QTc (short (≤340 ms) or long (≥480 ms)), on 1L-ECGs versus 12L-ECGs as reference standard. In case of significant discrepancy between lead I/II of 12L-ECGs and 1L-ECGs, we developed a correction tool by adding the difference between QT measurements of 12L-ECG and 1L-ECGs. Results 250 ECGs of 125 patients were included. The mean QTc interval, using Bazett's formula (QTcB), was 393±25 ms (mean±SD) in 1L-ECGs and 392±27 ms in lead I of 12L-ECGs, a mean difference of 1±21 ms, which was not statistically different (paired t-test (p=0.51) and Bland Altman method (p=0.23)). In terms of agreement between 1L-ECGs and lead I, QTcB had excellent agreement in 66.9% and clinically acceptable agreement in 93.4% of observations. The sensitivity and specificity of detecting extreme QTc were 0% and 99.2%, respectively. The comparison of 1L-ECG QTcB with lead II of 12L-ECGs showed a significant difference (p=<0.01), but when using a correction factor (+9 ms) this difference was cancelled (paired t-test (p=0.43) or Bland Altman test (p=0.57)). Moreover, it led to improved rates of excellent (71.3%) and clinically acceptable (94.3%) agreement. Conclusion Smartphone-operated 1L-ECGs can be used to accurately measure the QTc interval compared with simultaneously obtained 12L-ECGs in a primary care population. This may provide an opportunity for monitoring the effects of potential QTc-prolonging medications

    A Core Outcome Measurement Set for Pediatric Critical Care

    No full text
    Objectives: To identify a PICU Core Outcome Measurement Set (PICU COMS), a set of measures that can be used to evaluate the PICU Core Outcome Set (PICU COS) domains in PICU patients and their families. Design: A modified Delphi consensus process. Setting: Four webinars attended by PICU physicians and nurses, pediatric surgeons, rehabilitation physicians, and scientists with expertise in PICU clinical care or research (n = 35). Attendees were from eight countries and convened from the Pediatric Acute Lung Injury and Sepsis Investigators Pediatric Outcomes STudies after PICU Investigators and the Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network PICU COS Investigators. Subjects: Measures to assess outcome domains of the PICU COS are as follows: cognitive, emotional, overall (including health-related quality of life), physical, and family health. Measures evaluating social health were also considered. Interventions: None. Measurements and Main Results: Measures were classified as general or additional based on generalizability across PICU populations, feasibility, and relevance to specific COS domains. Measures with high consensus, defined as 80% agreement for inclusion, were selected for the PICU COMS. Among 140 candidate measures, 24 were delineated as general (broadly applicable) and, of these, 10 achieved consensus for inclusion in the COMS (7 patient-oriented and 3 family-oriented). Six of the seven patient measures were applicable to the broadest range of patients, diagnoses, and developmental abilities. All were validated in pediatric populations and have normative pediatric data. Twenty additional measures focusing on specific populations or in-depth evaluation of a COS subdomain also met consensus for inclusion as COMS additional measures. Conclusions: The PICU COMS delineates measures to evaluate domains in the PICU COS and facilitates comparability across future research studies to characterize PICU survivorship and enable interventional studies to target long-term outcomes after critical illness.</p

    Tools for Assessment of the Appropriateness of Prescribing and Association with Patient-Related Outcomes: A Systematic Review

    No full text

    Leprosy

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore