744 research outputs found

    Linear motor motion control using a learning feedforward controller

    Get PDF
    The design and realization of an online learning motion controller for a linear motor is presented, and its usefulness is evaluated. The controller consists of two components: (1) a model-based feedback component, and (2) a learning feedforward component. The feedback component is designed on the basis of a simple second-order linear model, which is known to have structural errors. In the design, an emphasis is placed on robustness. The learning feedforward component is a neural-network-based controller, comprised of a one-hidden-layer structure with second-order B-spline basis functions. Simulations and experimental evaluations show that, with little effort, a high-performance motion system can be obtained with this approach

    Influence of the relative humidity on the morphology of inkjet printed spots of IgG on a non-porous substrate

    Get PDF
    During the drying of inkjet printed droplets, the solute particles (IgG-Alexa-635 molecules) in the drop may distribute unevenly on the substrate, resulting in a coffee-stain spot morphology. In our study, we investigated the influence of the relative humidity on the distribution of inkjet printed fluorophore labeled IgG molecules on a polystyrene substrate. A theoretical model for an evaporating droplet was developed in order to predict the changes in the spot diameter, height and volume of a drying droplet. An experiment was performed where a sessile droplet was monitored using a CCD camera installed on a goniometer and good agreement was found between the experimental results and simulation data. We also compared the predicted morphology for an inkjet-printed microarray spot with the experimental results where IgG molecules were printed for various relative humidities. The spot morphology of the dried spots was analyzed by a confocal laser microscopy. At a lower relative humidity (i.e.

    Circulating angiopoietin-2 levels in the course of septic shock: relation with fluid balance, pulmonary dysfunction and mortality

    Get PDF
    Contains fulltext : 79899.pdf (publisher's version ) (Closed access)PURPOSE: To investigate whether angiopoietin-2, von Willebrand factor (VWF) and angiopoietin-1 relate to surrogate indicators of vascular permeability, pulmonary dysfunction and intensive care unit (ICU) mortality throughout the course of septic shock. METHODS: In 50 consecutive mechanically ventilated septic shock patients, plasma angiopoietin-2, VWF and angiopoietin-1 levels and fluid balance, partial pressure of oxygen/inspiratory oxygen fraction and the oxygenation index as indicators of vascular permeability and pulmonary dysfunction, respectively, were measured until day 28. RESULTS: Angiopoietin-2 positively related to the fluid balance and pulmonary dysfunction, was higher in non-survivors than in survivors and independently predicted non-survival throughout the course of septic shock. VWF inversely related to the fluid balance and pulmonary dysfunction throughout the course of septic shock, was comparable between survivors and non-survivors and predicted non-survival on day 0 only. Angiopoietin-1 positively related to pulmonary dysfunction throughout the course, but did not differ between survivors and non-survivors. CONCLUSIONS: In contrast to VWF, plasma angiopoietin-2 positively relates to fluid balance, pulmonary dysfunction and mortality throughout the course of septic shock, in line with a suggested mediator role of the protein

    Optimization and Dose Estimation of Aerosol Delivery to Non-Human Primates

    Get PDF
    Background: In pre-clinical animal studies, the uniformity of dosing across subjects and routes of administration is a crucial requirement. In preparation for a study in which aerosolized live-attenuated measles virus vaccine was administered to cynomolgus monkeys (Macaca fascicularis) by inhalation, we assessed the percentage of a nebulized dose inhaled under varying conditions. Methods: Drug delivery varies with breathing parameters. Therefore we determined macaque breathing patterns (tidal volume, breathing frequency, and inspiratory to expiratory (I:E) ratio) across a range of 3.3-6.5 kg body weight, using a pediatric pneumotachometer interfaced either with an endotracheal tube or a facemask. Subsequently, these breathing patterns were reproduced using a breathing simulator attached to a filter to collect the inhaled dose. Albuterol was nebulized using a vibrating mesh nebulizer and the percentage inhaled dose was determined by extraction of drug from the filter and subsequent quantification. Results: Tidal volumes ranged from 24 to 46 mL, breathing frequencies from 19 to 31 breaths per minute and I:E ratios from 0.7 to 1.6. A small pediatric resuscitation mask was identified as the best fitting interface between animal and pneumotachometer. The average efficiency of inhaled dose delivery was 32.1% (standard deviation 7.5, range 24%-48%), with variation in tidal volumes as the most important determinant. Conclusions: Studies in non-human primates aimed at comparing aerosol delivery with other routes of administration should take both the inter-subject variation and relatively low efficiency of delivery to these low body weight mammals into account

    Orthotopic liver transplantation in glycogen storage disease type la: Perioperative glucose and lactate homeostasis

    Get PDF
    Abstract Glycogen storage disease type 1a (GSD 1a) is a rare inborn error of metabolism. It causes severe fasting intolerance and lactic acidosis due to the deficiency of glucose-6-phosphatase enzyme. Blood glucose and lactate concentrations from 2 patients with GSD 1a were retrospectively compared to a control group of patients with familial amyloid polyneuropathy. Carbohydrate intake and infusions were compared to experimental data based on stable isotope studies. Perioperative lactate concentrations were significantly higher in our 2 patients with GSD 1a (median 15.0 mmol/L; range 9.9-22.0 mmol/L) versus 8 controls. In one patient, despite normal blood glucose concentrations, lactate acidosis was probably caused by a combination of the disease itself, insufficient (par)enteral carbohydrate intake, Ringer lactate infusions, and circulatory insufficiency. Patients with GSD 1a carry an increased risk of lactic acidosis during orthotopic liver transplantation compared to non-GSD patients. Multidisciplinary perioperative care is essential to prevent significant complications

    Simian varicella virus infection of Chinese rhesus macaques produces ganglionic infection in the absence of rash

    Get PDF
    Varicella-zoster virus (VZV) causes varicella (chickenpox), becomes latent in ganglia along the entire neuraxis, and may reactivate to cause herpes zoster (shingles). VZV may infect ganglia via retrograde axonal transport from infected skin or through hematogenous spread. Simian varicella virus (SVV) infection of rhesus macaques provides a useful model system to study the pathogenesis of human VZV infection. To dissect the virus and host immune factors during acute SVV infection, we analyzed four SVV-seronegative Chinese rhesus macaques infected intratracheally with cell-associated 5 × 103 plaque-forming units (pfu) of SVV-expressing green fluorescent protein (n = 2) or 5 × 104 pfu of wild-type SVV (n = 2). All monkeys developed viremia and SVV-specific adaptive B- and T-cell immune responses, but none developed skin rash. At necropsy 21 days postinfection, SVV DNA was found in ganglia along the entire neuraxis and in viscera, and SVV RNA was found in ganglia, but not in viscera. The amount of SVV inoculum was associated with the extent of viremia and the immune response to virus. Our findings demonstrate that acute SVV infection of Chinese rhesus macaques leads to ganglionic infection by the hematogenous route and the induction of a virus-specific adaptive memory response in the absence of skin rash

    Carbon nanoparticles in lateral flow methods to detect genes encoding virulence factors of Shiga toxin-producing Escherichia coli

    Get PDF
    The use of carbon nanoparticles is shown for the detection and identification of different Shiga toxin-producing Escherichia coli virulence factors (vt1, vt2, eae and ehxA) and a 16S control (specific for E. coli) based on the use of lateral flow strips (nucleic acid lateral flow immunoassay, NALFIA). Prior to the detection with NALFIA, a rapid amplification method with tagged primers was applied. In the evaluation of the optimised NALFIA strips, no cross-reactivity was found for any of the antibodies used. The limit of detection was higher than for quantitative PCR (q-PCR), in most cases between 104 and 105 colony forming units/mL or 0.1–0.9 ng/μL DNA. NALFIA strips were applied to 48 isolates from cattle faeces, and results were compared to those achieved by q-PCR. E. coli virulence factors identified by NALFIA were in very good agreement with those observed in q-PCR, showing in most cases sensitivity and specificity values of 1.0 and an almost perfect agreement between both methods (kappa coefficient larger than 0.9). The results demonstrate that the screening method developed is reliable, cost-effective and user-friendly, and that the procedure is fast as the total time required is <1 h, which includes amplification

    A Study Of A New Class Of Discrete Nonlinear Schroedinger Equations

    Full text link
    A new class of 1D discrete nonlinear Schro¨{\ddot{\rm{o}}}dinger Hamiltonians with tunable nonlinerities is introduced, which includes the integrable Ablowitz-Ladik system as a limit. A new subset of equations, which are derived from these Hamiltonians using a generalized definition of Poisson brackets, and collectively refered to as the N-AL equation, is studied. The symmetry properties of the equation are discussed. These equations are shown to possess propagating localized solutions, having the continuous translational symmetry of the one-soliton solution of the Ablowitz-Ladik nonlinear Schro¨{\ddot{\rm{o}}}dinger equation. The N-AL systems are shown to be suitable to study the combined effect of the dynamical imbalance of nonlinearity and dispersion and the Peierls-Nabarro potential, arising from the lattice discreteness, on the propagating solitary wave like profiles. A perturbative analysis shows that the N-AL systems can have discrete breather solutions, due to the presence of saddle center bifurcations in phase portraits. The unstaggered localized states are shown to have positive effective mass. On the other hand, large width but small amplitude staggered localized states have negative effective mass. The collison dynamics of two colliding solitary wave profiles are studied numerically. Notwithstanding colliding solitary wave profiles are seen to exhibit nontrivial nonsolitonic interactions, certain universal features are observed in the collison dynamics. Future scopes of this work and possible applications of the N-AL systems are discussed.Comment: 17 pages, 15 figures, revtex4, xmgr, gn

    Modified Vaccinia Virus Ankara Preferentially Targets Antigen Presenting Cells in Vitro, Ex Vivo and in Vivo

    Get PDF
    Modified Vaccinia virus Ankara (MVA) is a promising vaccine vector with an excellent safety profile. However, despite extensive pre-clinical and clinical testing, surprisingly little is known about the cellular tropism of MVA, especially in relevant animal species. Here, we performed in vitro, ex vivo and in vivo experiments with recombinant MVA expressing green fluorescent protein (rMVA-GFP). In both human peripheral blood mononuclear cells and mouse lung explants, rMVA-GFP predominantly infected antigen presenting cells. Subsequent in vivo experiments performed in mice, ferrets and non-human primates indicated that preferential targeting of dendritic cells and alveolar macrophages was observed after respiratory administration, although subtle differences were observed between the respective animal species. Following intramuscular injection, rMVA-GFP was detected in interdigitating cells between myocytes, but also in myocytes themselves. These data are important in advancing our understanding of the basis for the immunogenicity of MVA-based vaccines and aid rational vaccine design and delivery strategies

    Linear dichroism and circular dichroism in photosynthesis research

    Get PDF
    The efficiency of photosynthetic light energy conversion depends largely on the molecular architecture of the photosynthetic membranes. Linear- and circular-dichroism (LD and CD) studies have contributed significantly to our knowledge of the molecular organization of pigment systems at different levels of complexity, in pigment–protein complexes, supercomplexes, and their macroassemblies, as well as in entire membranes and membrane systems. Many examples show that LD and CD data are in good agreement with structural data; hence, these spectroscopic tools serve as the basis for linking the structure of photosynthetic pigment–protein complexes to steady-state and time-resolved spectroscopy. They are also indispensable for identifying conformations and interactions in native environments, and for monitoring reorganizations during photosynthetic functions, and are important in characterizing reconstituted and artificially constructed systems. This educational review explains, in simple terms, the basic physical principles, and theory and practice of LD and CD spectroscopies and of some related quantities in the areas of differential polarization spectroscopy and microscopy
    corecore