40 research outputs found

    Host Restriction Factor SAMHD1 Limits Human T Cell Leukemia Virus Type 1 Infection of Monocytes via STING-Mediated Apoptosis

    Get PDF
    SummaryHuman T cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T cell leukemia and HTLV-1-associated myelopathies. In addition to T cells, HTLV-1 infects cells of the myeloid lineage, which play critical roles in the host innate response to viral infection. Investigating the monocyte depletion observed during HTLV-1 infection, we discovered that primary human monocytes infected with HTLV-1 undergo abortive infection accompanied by apoptosis dependent on SAMHD1, a host restriction factor that hydrolyzes endogenous dNTPs to below the levels required for productive reverse transcription. Reverse transcription intermediates (RTI) produced in the presence of SAMHD1 induced IRF3-mediated antiviral and apoptotic responses. Viral RTIs complexed with the DNA sensor STING to trigger formation of an IRF3-Bax complex leading to apoptosis. This study provides a mechanistic explanation for abortive HTLV-1 infection of monocytes and reports a link between SAMHD1 restriction, HTLV-1 RTI sensing by STING, and initiation of IRF3-Bax driven apoptosis

    Proinflammatory isoforms of IL-32 as novel and robust biomarkers for control failure in HIV-infected slow progressors.

    Get PDF
    International audienceHIV-infected slow progressors (SP) represent a heterogeneous group of subjects who spontaneously control HIV infection without treatment for several years while showing moderate signs of disease progression. Under conditions that remain poorly understood, a subgroup of these subjects experience failure of spontaneous immunological and virological control. Here we determined the frequency of SP subjects who showed loss of HIV control within our Canadian Cohort of HIV(+) Slow Progressors and identified the proinflammatory cytokine IL-32 as a robust biomarker for control failure. Plasmatic levels of the proinflammatory isoforms of IL-32 (mainly ÎČ and Îł) at earlier clinic visits positively correlated with the decline of CD4 T-cell counts, increased viral load, lower CD4/CD8 ratio and levels of inflammatory markers (sCD14 and IL-6) at later clinic visits. We present here a proof-of-concept for the use of IL-32 as a predictive biomarker for disease progression in SP subjects and identify IL-32 as a potential therapeutic target

    Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors

    Get PDF
    Aging leads to dysregulation of multiple components of the immune system that results in increased susceptibility to infections and poor response to vaccines in the aging population. The dysfunctions of adaptive B and T cells are well documented, but the effect of aging on innate immunity remains incompletely understood. Using a heterogeneous population of peripheral blood mononuclear cells (PBMCs), we first undertook transcriptional profiling and found that PBMCs isolated from old individuals (≄ 65 years) exhibited a delayed and altered response to stimulation with TLR4, TLR7/8, and RIG-I agonists compared to cells obtained from adults (≀ 40 years). This delayed response to innate immune agonists resulted in the reduced production of pro-inflammatory and antiviral cytokines and chemokines including TNFα, IL-6, IL-1ÎČ, IFNα, IFNÎł, CCL2, and CCL7. While the major monocyte and dendritic cell subsets did not change numerically with aging, activation of specific cell types was altered. PBMCs from old subjects also had a lower frequency of CD40+ monocytes, impaired up-regulation of PD-L1 on monocytes and T cells, and increased expression of PD-L2 and B7-H4 on B cells. The defective immune response to innate agonists adversely affected adaptive immunity as TLR-stimulated PBMCs (minus CD3 T cells) from old subjects elicited significantly lower levels of adult T-cell proliferation than those from adult subjects in an allogeneic mixed lymphocyte reaction (MLR). Collectively, these age-associated changes in cytokine, chemokine and interferon production, as well as co-stimulatory protein expression could contribute to the blunted memory B- and T-cell immune responses to vaccines and infections

    Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4+ central memory T cells

    Get PDF
    The molecular events involved in the establishment and maintenance of CD4+ central memory and effector memory T cells (TCM and TEM, respectively) are poorly understood. In this study, we demonstrate that ex vivo isolated TCM are more resistant to both spontaneous and Fas-induced apoptosis than TEM and have an increased capacity to proliferate and persist in vitro. Using global gene expression profiling, single cell proteomics, and functional assays, we show that the survival of CD4+ TCM depends, at least in part, on the activation and phosphorylation of signal transducer and activator of transcription 5a (STAT5a) and forkhead box O3a (FOXO3a). TCM showed a significant increase in the levels of phosphorylation of STAT5a compared with TEM in response to both IL-2 (P < 0.04) and IL-7 (P < 0.002); the latter is well known for its capacity to enhance T cell survival. Moreover, ex vivo TCM express higher levels of the transcriptionally inactive phosphorylated forms of FOXO3a and concomitantly lower levels of the proapoptotic FOXO3a target, Bim. Experiments aimed at blocking FOXO3a phosphorylation confirmed the role of this phosphoprotein in protecting TCM from apoptosis. Our results provide, for the first time in humans, an insight into molecular mechanisms that could be responsible for the longevity and persistence of CD4+ TCM

    Human endothelial progenitors constitute targets for environmental atherogenic polycyclic aromatic hydrocarbons.

    No full text
    International audienceCigarette smoking, a well-known cardiovascular risk factor, has been recently demonstrated to decrease circulating endothelial progenitor cell (EPC) number. Owing to the fact that polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BP) constitute major components of tobacco smoke, the present study was designed to analyze the effects of these chemicals on the development of human EPC cultures from peripheral blood mononuclear cells. Treatment by BP markedly impaired EPC number and EPC colonies in a dose-dependent manner. Such deleterious effects were abrogated using 3'-methoxy-4'-nitroflavone, a pure antagonist of the aryl hydrocarbon receptor, highlighting the involvement of this receptor in PAH toxicity towards EPCs. Additional events such as cytochrome P-450-dependent PAH metabolism and formation of PAH-related adducts to cellular macromolecules were also required. Overall, these data established EPCs as new cellular targets of PAHs, which may contribute to the deleterious cardiovascular effects of environmental substances containing these chemicals, especially tobacco smoke

    Potent inhibition of carcinogen-bioactivating cytochrome P450 1B1 by the p53 inhibitor pifithrin alpha.

    No full text
    International audiencePifithrin alpha (PFTalpha) is a chemical compound that inhibits p53-mediated gene activation and apoptosis. It has also been recently shown to alter metabolism of carcinogenic polycyclic aromatic hydrocarbons (PAHs). This has led us to examine the effect of PFTalpha on the activity of cytochrome P-450 (CYP) 1 isoforms, known to metabolize PAHs, such as benzo(a)pyrene (BP), into mutagenic metabolites. We report that PFTalpha caused a potent inhibition of CYP1-related activity as measured by ethoxyresorufin O-deethylase activity in CYP1-containing MCF-7 cells and liver microsomes. It also directly affected the catalytic activity of human recombinant CYP1A1, CYP1A2 and CYP1B1 isoforms, with a potent inhibitory effect towards CYP1B1. The nature of this CYP1B1 inhibition by PFTalpha was mixed-type with an apparent K(i) of 4.38 nM. Blockage of CYP1 activity by PFTalpha was associated with a decreased metabolism of BP, a reduced formation of BP-derived adducts and a diminished BP-induced apoptosis in human cultured cells targets for PAHs like primary human macrophages and p53-negative KG1a leukaemia cells. These data further substantiate an unexpected and p53-independent action of PFTalpha for preventing toxicity of chemical carcinogens such as PAHs, through inhibition of CYP1 enzyme activities, especially that of CYP1B1

    Cannabinoid-Induced Immunomodulation during Viral Infections: A Focus on Mitochondria

    No full text
    This review examines the impact of cannabinoids on viral infections, as well as its effects on the mitochondria of the nervous and immune system. The paper conveys information about the beneficial and negative impacts of cannabinoids on viral infections, especially HIV-1. These include effects on the inflammatory response as well as neuroprotective effects. We also explore non-apoptotic mitochondrial pathways modulated by the activity of cannabinoids, resulting in modifications to cellular functions. As a large part of the literature derives from studies of the nervous system, we first compile the information related to mitochondrial functions in this system, particularly through the CB1 receptor. Finally, we reflect on how this knowledge could complement what has been demonstrated in the immune system, especially in the context of the CB2 receptor and Ca2+ uptake. The overall conclusion of the review is that cannabinoids have the potential to affect a broad range of cell types through mitochondrial modulation, be it through receptor-specific action or not, and that this pathway has a potential implication in cases of viral infection

    IRF-5 Promotes Cell Death in CD4 T Cells during Chronic Infection

    No full text
    International audienceThe transcription factor interferon regulatory factor 5 (IRF-5) plays an important function in innate immunity and in initiating pro-inflammatory responses against pathogens. IRF-5 is constitutively expressed in several cell types, including plasmacytoid dendritic cells, monocytes, and B cells. We have previously reported that IRF-5 is also expressed in T cells during infection. The role of IRF-5 in T cells is yet unknown. Here, we demonstrate that IRF-5 is increasingly expressed in interferon (IFN)-γ+ CD4 T cells over the course of L. donovani infection. This transcription factor is induced by apoptotic material via Toll-like receptor 7 (TLR7) and promotes the expression of death receptor 5 (DR5). IRF-5 activation sensitizes CD4 T cells to cell death. Because tissue disruption and chronic inflammation are common characteristics of persistent infections, activation of IRF-5 in CD4 T cells may represent a common pathway that leads to suppression of protective CD4 T cell responses, favoring the establishment of chronic infection
    corecore