51 research outputs found

    Visually estimated ejection fraction by two dimensional and triplane echocardiography is closely correlated with quantitative ejection fraction by real-time three dimensional echocardiography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visual assessment of left ventricular ejection fraction (LVEF) is often used in clinical routine despite general recommendations to use quantitative biplane Simpsons (BPS) measurements. Even thou quantitative methods are well validated and from many reasons preferable, the feasibility of visual assessment (eyeballing) is superior. There is to date only sparse data comparing visual EF assessment in comparison to quantitative methods available. The aim of this study was to compare visual EF assessment by two-dimensional echocardiography (2DE) and triplane echocardiography (TPE) using quantitative real-time three-dimensional echocardiography (RT3DE) as the reference method.</p> <p>Methods</p> <p>Thirty patients were enrolled in the study. Eyeballing EF was assessed using apical 4-and 2 chamber views and TP mode by two experienced readers blinded to all clinical data. The measurements were compared to quantitative RT3DE.</p> <p>Results</p> <p>There were an excellent correlation between eyeballing EF by 2D and TP vs 3DE (r = 0.91 and 0.95 respectively) without any significant bias (-0.5 ± 3.7% and -0.2 ± 2.9% respectively). Intraobserver variability was 3.8% for eyeballing 2DE, 3.2% for eyeballing TP and 2.3% for quantitative 3D-EF. Interobserver variability was 7.5% for eyeballing 2D and 8.4% for eyeballing TP.</p> <p>Conclusion</p> <p>Visual estimation of LVEF both using 2D and TP by an experienced reader correlates well with quantitative EF determined by RT3DE. There is an apparent trend towards a smaller variability using TP in comparison to 2D, this was however not statistically significant.</p

    MRI Discriminates Thrombus Composition and ST Resolution after Percutaneous Coronary Intervention in Patients with ST-Elevation Myocardial Infarction

    Get PDF
    Histological composition of material obtained by thrombus aspiration during percutaneous coronary intervention (PCI) in patients with ST-segment elevation acute myocardial infarction (STEMI) is highly variable. We aimed to characterize this material using magnetic resonance imaging (MRI) and to correlate MRI findings with the success of PCI in terms of ST-segment resolution. Thrombus aspiration during primary or rescue PCI was attempted in 100 consecutive STEMI patients, of whom enough material for MRI was obtained in 59. MR images were obtained at 9.4T and T1 and T2 values were measured. Patients with (n = 31) and without (n = 28) adequate ST resolution 120 min after PCI (≥70% of pre-PCI value) had similar baseline characteristics except for a higher prevalence of diabetes mellitus in the latter (10 vs. 43%, p = 0.003). T1 values were similar in both groups (1248±112 vs. 1307±85 ms, respectively, p = 0.7). T2 values averaged 31.2±10.3 and 36.6±12.2 ms; in thrombus from patients with and without adequate ST resolution (p = 0.09). After adjusting for diabetes and other baseline characteristics, lower T2 values were significantly associated with inadequate ST resolution (odds ratio for 1 ms increase 1.08, CI 95% 1.01–1.16, p = 0.027). Histology classified thrombus in 3 groups: coagulated blood (n = 38), fibrin rich (n = 9) and lipid-rich (n = 3). Thrombi composed mostly of coagulated blood were characterized as being of short (n = 10), intermediate (n = 15) or long evolution (n = 13), T2 values being 34.0±13.2, 31.9±8.3 and 31.5±7.9 ms respectively (p = NS). In this subgroup, T2 was significantly higher in specimens from patients with inadequate perfusion (35.9±10.3 versus 28.6±6.7 ms, p = 0.02). This can be of clinical interest as it provides information on the probability of adequate ST resolution, a surrogate for effective myocardial reperfusion

    Longitudinal peak strain detects a smaller risk area than visual assessment of wall motion in acute myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Opening of an occluded infarct related artery reduces infarct size and improves survival in acute ST-elevation myocardial infarction (STEMI). In this study we performed tissue Doppler analysis (peak strain, displacement, mitral annular movement (MAM)) and compared with visual assessment for the study of the correlation of measurements of global, regional and segmental function with final infarct size and transmurality. In addition, myocardial risk area was determined and a prediction sought for the development of infarct transmurality ≥50%.</p> <p>Methods</p> <p>Twenty six patients with STEMI submitted for primary percutaneous coronary intervention (PCI) were examined with echocardiography on the catheterization table. Four to eight weeks later repeat echocardiography was performed for reassessment of function and magnetic resonance imaging for the determination of final infarct size and transmurality.</p> <p>Results</p> <p>On a global level, wall motion score index (WMSI), ejection fraction (EF), strain, and displacement all showed significant differences (p ≤ 0.001, p ≤ 0.001, p ≤ 0.001 and p = 0.03) between the two study visits, but MAM did not (p = 0.17). On all levels (global, regional and segmental) and both pre- and post PCI, WMSI showed a higher correlation with scar transmurality compared to strain. We found that both strain and WMSI predicted the development of scar transmurality ≥50%, but strain added no significant information to that obtained with WMSI in a logistic regression analysis.</p> <p>Conclusions</p> <p>In patients with acute STEMI, WMSI, EF, strain, and displacement showed significant changes between the pre- and post PCI exam. In a ROC-analysis, strain had 64% sensitivity at 80% specificity and WMSI around 90% sensitivity at 80% specificity for the detection of scar with transmurality ≥50% at follow-up.</p
    • …
    corecore