4 research outputs found

    Neural mechanisms of interstimulus interval-dependent responses in the primary auditory cortex of awake cats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary auditory cortex (AI) neurons show qualitatively distinct response features to successive acoustic signals depending on the inter-stimulus intervals (ISI). Such ISI-dependent AI responses are believed to underlie, at least partially, categorical perception of click trains (elemental vs. fused quality) and stop consonant-vowel syllables (eg.,/da/-/ta/continuum).</p> <p>Methods</p> <p>Single unit recordings were conducted on 116 AI neurons in awake cats. Rectangular clicks were presented either alone (single click paradigm) or in a train fashion with variable ISI (2–480 ms) (click-train paradigm). Response features of AI neurons were quantified as a function of ISI: one measure was related to the degree of stimulus locking (temporal modulation transfer function [tMTF]) and another measure was based on firing rate (rate modulation transfer function [rMTF]). An additional modeling study was performed to gain insight into neurophysiological bases of the observed responses.</p> <p>Results</p> <p>In the click-train paradigm, the majority of the AI neurons ("synchronization type"; <it>n </it>= 72) showed stimulus-locking responses at long ISIs. The shorter cutoff ISI for stimulus-locking responses was on average ~30 ms and was level tolerant in accordance with the perceptual boundary of click trains and of consonant-vowel syllables. The shape of tMTF of those neurons was either band-pass or low-pass. The single click paradigm revealed, at maximum, four response periods in the following order: 1st excitation, 1st suppression, 2nd excitation then 2nd suppression. The 1st excitation and 1st suppression was found exclusively in the synchronization type, implying that the temporal interplay between excitation and suppression underlies stimulus-locking responses. Among these neurons, those showing the 2nd suppression had band-pass tMTF whereas those with low-pass tMTF never showed the 2nd suppression, implying that tMTF shape is mediated through the 2nd suppression. The recovery time course of excitability suggested the involvement of short-term plasticity. The observed phenomena were well captured by a single cell model which incorporated AMPA, GABA<sub>A</sub>, NMDA and GABA<sub>B </sub>receptors as well as short-term plasticity of thalamocortical synaptic connections.</p> <p>Conclusion</p> <p>Overall, it was suggested that ISI-dependent responses of the majority of AI neurons are configured through the temporal interplay of excitation and suppression (inhibition) along with short-term plasticity.</p

    Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes

    Full text link

    A new family of intrinsically disordered proteins: structural characterization of the major phasin PhaF from Pseudomonas putida KT2440

    Get PDF
    Contains fulltext : 118281.pdf (publisher's version ) (Open Access)Phasins are intracellular polyhydroxyalkanoat4e (PHA)-associated proteins involved in the stabilization of these bacterial carbon storage granules. Despite its importance in PHA metabolism and regulation, only few reports have focused so far on the structure of these proteins. In this work we have investigated the structure and stability of the PhaF phasin from Pseudomonas putida KT2440, a protein that is involved in PHA granule stabilization and distribution to daughter cells upon cell division. A structural, three-dimensional model of the protein was built from homology modeling procedures and consensus secondary structure predictions. The model predicts that PhaF is an elongated protein, with a long, amphipathic N-terminal helix with PHA binding capacity, followed by a short leucine zipper involved in protein oligomerization and a superhelical C-terminal domain wrapped around the chromosomal DNA. Hydrodynamic, spectroscopical and thermodynamic experiments validated the model and confirmed both that free PhaF is a tetramer in solution and that most part of the protein is intrinsically disordered in the absence of its ligands. The results lay a molecular basis for the explanation of the biological role of PhaF and, along with an exhaustive analysis of phasin sequence databases, suggest that intrinsic disorder and oligomerization through coiled-coils may be a widespread mechanism among these proteins
    corecore