48 research outputs found

    The role of alexithymia and empathy on radiation therapists’ professional quality of life

    Get PDF
    Background and purpose: Physical and mental well-being are crucial for oncology professionals as they affect performance at work. Personality traits, as alexithymia and empathy, may influence professional quality of life. Alexithymia involves diminished skills in emotion processing and awareness. Empathy is pertinent to the ability to understand another's ‘state of mind/emotion’. The PROject on Burn-Out in RadiatioN Oncology (PRO BONO) investigates professional quality of life amongst radiation oncology professionals, exploring the role of alexithymia and empathy. The present study reports on data pertinent to radiation therapists (RTTs). Material and methods: An online survey targeted ESTRO members. Participants were asked to fill out 3 questionnaires for alexithymia, empathy and professional quality of life: (a) Toronto Alexithymia Scale (TAS-20); (b) Interpersonal Reactivity Index (IRI); (c) Professional Quality of Life Scale (ProQoL). The present analysis focuses on RTTS to evaluate compassion satisfaction (CS), secondary traumatic stress (STS) and Burnout and their correlation with alexithymia and empathy, using generalized linear modeling. Covariates found significant at univariate linear regression analysis were included in the multivariate linear regression model. Results: A total of 399 RTTs completed all questionnaires. The final model for the burnout scale of ProQoL found, as significal predictors, the TAS-20 total score (β = 0.46, p < 0 0.001), and the individual's perception of being valued by supervisor (β = −0.29, p < 0.001). With respect to CS, the final model included TAS-20 total score (β = −0.33, p < 0.001), the Empatic Concern domain (β = 0.23, p < 0.001) of the IRI questionnaire and the individual's perception of being valued by colleagues (β = 0.22, p < 0.001). Conclusions: Alexithymia increased the likelyhood to experience burnout and negatively affected the professional quality of life amongst RTTs working in oncology. Empathy resulted in higher professional fulfillment together with collegaues’ appreciation. These results may be used to benchmark preventing strategies and implement organization-direct and/or individual-directed interventions

    Phase control and measurement in digital microscopy

    Get PDF
    The ongoing merger of the digital and optical components of the modern microscope is creating opportunities for new measurement techniques, along with new challenges for optical modelling. This thesis investigates several such opportunities and challenges which are particularly relevant to biomedical imaging. Fourier optics is used throughout the thesis as the underlying conceptual model, with a particular emphasis on three--dimensional Fourier optics. A new challenge for optical modelling provided by digital microscopy is the relaxation of traditional symmetry constraints on optical design. An extension of optical transfer function theory to deal with arbitrary lens pupil functions is presented in this thesis. This is used to chart the 3D vectorial structure of the spatial frequency spectrum of the intensity in the focal region of a high aperture lens when illuminated by linearly polarised beam. Wavefront coding has been used successfully in paraxial imaging systems to extend the depth of field. This is achieved by controlling the pupil phase with a cubic phase mask, and thereby balancing optical behaviour with digital processing. In this thesis I present a high aperture vectorial model for focusing with a cubic phase mask, and compare it with results calculated using the paraxial approximation. The effect of a refractive index change is also explored. High aperture measurements of the point spread function are reported, along with experimental confirmation of high aperture extended depth of field imaging of a biological specimen. Differential interference contrast is a popular method for imaging phase changes in otherwise transparent biological specimens. In this thesis I report on a new isotropic algorithm for retrieving the phase from differential interference contrast images of the phase gradient, using phase shifting, two directions of shear, and non--iterative Fourier phase integration incorporating a modified spiral phase transform. This method does not assume that the specimen has a constant amplitude. A simulation is presented which demonstrates good agreement between the retrieved phase and the phase of the simulated object, with excellent immunity to imaging noise

    Non-newtonian viscosity of polymer-modified bitumens

    No full text
    corecore