2,441 research outputs found

    Microscopic energy flows in disordered Ising spin systems

    Full text link
    An efficient microcanonical dynamics has been recently introduced for Ising spin models embedded in a generic connected graph even in the presence of disorder i.e. with the spin couplings chosen from a random distribution. Such a dynamics allows a coherent definition of local temperatures also when open boundaries are coupled to thermostats, imposing an energy flow. Within this framework, here we introduce a consistent definition for local energy currents and we study their dependence on the disorder. In the linear response regime, when the global gradient between thermostats is small, we also define local conductivities following a Fourier dicretized picture. Then, we work out a linearized "mean-field approximation", where local conductivities are supposed to depend on local couplings and temperatures only. We compare the approximated currents with the exact results of the nonlinear system, showing the reliability range of the mean-field approach, which proves very good at high temperatures and not so efficient in the critical region. In the numerical studies we focus on the disordered cylinder but our results could be extended to an arbitrary, disordered spin model on a generic discrete structures.Comment: 12 pages, 6 figure

    A multi-component model of the dynamics of salt-induced hypertension in Dahl-S rats

    Get PDF
    Background. In humans, salt intake has been suggested to influence blood pressure (BP) on a wide range of time scales ranging from several hours or days to many months or years. Detailed time course data collected in the Dahl salt-sensitive rat strain suggest that the development of salt-induced hypertension may consist of several distinct phases or components that differ in their timing and reversibility. To better understand these components, the present study sought to model the dynamics of salt-induced hypertension in the Dahl salt sensitive (Dahl-S) rat using 3 sets of time course data. Results. The first component of the model ("Acute-Reversible") consisted of a linear transfer function to account for the rapid and reversible effects of salt on BP (ie. acute salt sensitivity, corresponding with a depressed slope of the chronic pressure natriuresis relationship). For the second component ("Progressive-Irreversible"), an integrator function was used to represent the relatively slow, progressive, and irreversible effect of high salt intake on BP (corresponding with a progressive salt-induced shift of the chronic pressure natriuresis relationship to higher BP levels). A third component ("Progressive-Reversible") consisted of an effect of high salt intake to progressively increase the acute salt-sensitivity of BP (ie. reduce the slope of the chronic pressure natriuresis relationship), amounting to a slow and progressive, yet reversible, component of salt-induced hypertension. While the 3 component model was limited in its ability to follow the BP response to rapid and/or brief transitions in salt intake, it was able to accurately follow the slower steady state components of salt-induced BP changes. This model exhibited low values of mean absolute error (1.92 0.23, 2.13 0.37, 2.03 0.3 mmHg for data sets 1 - 3), and its overall performance was significantly improved over that of an initial model having only 2 components. The 3 component model performed well when applied to data from hybrids of Dahl salt sensitive and Dahl salt resistant rats in which salt sensitivity varied greatly in its extent and character (mean absolute error = 1.11 0.08 mmHg). Conclusion. Our results suggest that the slow process of development of salt-induced hypertension in Dahl-S rats over a period of many weeks can be well represented by a combination of three components that differ in their timing, reversibility, and their associated effect on the chronic pressure natriuresis relationship. These components are important to distinguish since each may represent a unique set of underlying mechanisms of salt-induced hypertension

    Dynamical correlations in electronic transport through a system of coupled quantum dots

    Full text link
    Current auto- and cross-correlations are studied in a system of two capacitively coupled quantum dots. We are interested in a role of Coulomb interaction in dynamical correlations, which occur outside the Coulomb blockade region (for high bias). After decomposition of the current correlation functions into contributions between individual tunneling events, we can show which of them are relevant and lead to sub-/supper-Poissonian shot noise and negative/positive cross-correlations. The results are differentiated for a weak and strong inter-dot coupling. Interesting results are for the strong coupling case when electron transfer in one of the channel is strongly correlated with charge drag in the second channel. We show that cross-correlations are non-monotonic functions of bias voltage and they are in general negative (except some cases with asymmetric tunnel resistances). This is effect of local potential fluctuations correlated by Coulomb interaction, which mimics the Pauli exclusion principle

    Classical simulation of measurement-based quantum computation on higher-genus surface-code states

    Full text link
    We consider the efficiency of classically simulating measurement-based quantum computation on surface-code states. We devise a method for calculating the elements of the probability distribution for the classical output of the quantum computation. The operational cost of this method is polynomial in the size of the surface-code state, but in the worst case scales as 22g2^{2g} in the genus gg of the surface embedding the code. However, there are states in the code space for which the simulation becomes efficient. In general, the simulation cost is exponential in the entanglement contained in a certain effective state, capturing the encoded state, the encoding and the local post-measurement states. The same efficiencies hold, with additional assumptions on the temporal order of measurements and on the tessellations of the code surfaces, for the harder task of sampling from the distribution of the computational output.Comment: 21 pages, 13 figure

    Efficient estimation of energy transfer efficiency in light-harvesting complexes

    Full text link
    The fundamental physical mechanisms of energy transfer in photosynthetic complexes is not yet fully understood. In particular, the degree of efficiency or sensitivity of these systems for energy transfer is not known given their non-perturbative and non-Markovian interactions with proteins backbone and surrounding photonic and phononic environments. One major problem in studying light-harvesting complexes has been the lack of an efficient method for simulation of their dynamics in biological environments. To this end, here we revisit the second-order time-convolution (TC2) master equation and examine its reliability beyond extreme Markovian and perturbative limits. In particular, we present a derivation of TC2 without making the usual weak system-bath coupling assumption. Using this equation, we explore the long time behaviour of exciton dynamics of Fenna-Matthews-Olson (FMO) protein complex. Moreover, we introduce a constructive error analysis to estimate the accuracy of TC2 equation in calculating energy transfer efficiency, exhibiting reliable performance for environments with weak and intermediate memory and strength. Furthermore, we numerically show that energy transfer efficiency is optimal and robust for the FMO protein complex of green sulphur bacteria with respect to variations in reorganization energy and bath correlation time-scales.Comment: 16 pages, 9 figures, modified version, updated appendices and reference lis

    Effect of adaptive abilities on utilities, direct or mediated by mental health?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In cost-utility analyses gain in health can be measured using health state utilities. Health state utilities can be elicited from members of the public or from patients. Utilities given by patients tend to be higher than utilities given by members of the public. This difference is often suggested to be explained by adaptation, but this has not yet been investigated in patients. Here, we investigate if, besides health related quality of life (HRQL), persons' ability to adapt can explain health state utilities. Both the direct effect of persons' adaptive abilities on health state utilities and the indirect effect, where HRQL mediates the effect of ability to adapt, are examined.</p> <p>Methods</p> <p>In total 125 patients with Rheumatoid Arthritis were interviewed. Participants gave valuations of their own health on a visual analogue scale (VAS) and time trade-off (TTO). To estimate persons' ability to adapt, patients filled in questionnaires measuring Self-esteem, Mastery, and Optimism. Finally they completed the SF-36 measuring HRQL. Regression analyses were used to investigate the direct and mediated effect of ability to adapt on health state utilities.</p> <p>Results</p> <p>Persons' ability to adapt did not add considerably to the explanation of health state utilities above HRQL. In the TTO no additional variance was explained by adaptive abilities (Δ R<sup>2 </sup>= .00, β = .02), in the VAS a minor proportion of the variance was explained by adaptive abilities (Δ R<sup>2 </sup>= .05, β = .33). The effect of adaptation on health state utilities seems to be mediated by the mental health domain of quality of life.</p> <p>Conclusions</p> <p>Patients with stronger adaptive abilities, based on their optimism, mastery and self-esteem, may more easily enhance their mental health after being diagnosed with a chronic illness, which leads to higher health state utilities.</p

    TB165: Chemical and Physical Properties of the Danforth, Elliotsville, Peacham, and Penquis Soil Map Units

    Get PDF
    The soils reported in this bulletin have developed in several different parent materials. The Danforth soil has developed from very deep, well drained, loose, high coarse fragment till derived from slate and fine-grained metasandstone. The Elliottsville soils have developed in moderately deep, well drained till derived from slates, metasandstones, phyllite and schists. The Penquis soils developed in moderately deep, well drained till of similar lithology as Elliottsville, but with a higher component of weathered and crushable rock fragments throughout the soil profile. Peacham soils are developed in very deep, very poorly drained, dense till derived from phyllite, schist, and granite.https://digitalcommons.library.umaine.edu/aes_techbulletin/1041/thumbnail.jp
    • …
    corecore