127 research outputs found
Formulation and characterization of pH induced in situ gels containing sulfacetamide sodium for ocular drug delivery: A combination of Carbopol<sup>®</sup>/HPMC polymer
© 2019, Association of Pharmaceutical Teachers of India. All rights reserved. Introduction: Topical delivery of eye drops which currently accounts to 90% of available ocular dosage forms are ideal for the treatment of eye diseases but having limitations of poor therapeutic response and low bioavailability. Objectives: The objectives of present research was to develop and characterize sustained release in situ ocular gels containing sufacetamide sodium using pH induced gelling polymers for improved therapeutic response and patient compliance. Methods: In situ gel formulations prepared by dispersion method using Carbopol® 940/Carbopol® 934 alone or in combination with hydroxypropyl methylcellulose (HPMC E4M). Formultaions were evaluated for appearance, pH, viscosity, gelling capacity, drug content and in vitro drug release. The optimized formulation was assessed for sterility and antimicrobial efficacy using disk diffusion technique in comparison to commercial eye drops (Albucid®10%). Results: The appearance of in situ gels were clear and free flowing in nature however, a viscous clear solution with no flow was produced for formulations consisting of 0.8% w/v Carbopol® 940/Carbopol® 934 and 2% w/v HPMC E4M. pH of all the formulations was within the range of 5.9 to 6.7. In situ gels with Carbopol® 940 demonstrated higher viscosity compared to Carbopol® 934 and drug release was sustained over a period of 8 hr. The selected formulation containing 0.8% w/v Carbopol® 940 and 1.5% w/v HPMC E4M passed sterility test and demonstrated similar antimicrobial efficiency compared to commercial product. Conclusion: Carbopol®/HPMC-based in situ gels have potential to improve patient’s compliance by reducing the dosing frequency and could be a viable alternative to commercial product
Coupled measurements of δ<sup>18</sup>O and δD of hydration water and salinity of fluid inclusions in gypsum from the Messinian Yesares Member, Sorbas Basin (SE Spain)
We studied one cycle (Cycle 6) of gypsum-marl deposition from the Messinian Yesares Member in Sorbas Basin, Spain. The objective was to reconstruct the changing environment of deposition and its relation to astronomically-forced climate change. The δ1818O and δD of gypsum hydration water (CaSO4•2H2O) and salinity of fluid inclusions were measured in the same samples to test if they record the composition of the mother fluid from which gypsum was precipitated. Water isotopes are highly correlated with fluid inclusion salinity suggesting the hydration water has not exchanged after formation. The relatively low water isotope values and fluid inclusion salinities indicate a significant influence of meteoric water, whereas δ34S, δ18OSO4 26 and 87Sr/86Sr support a dominant marine origin for the gypsum deposits. The discrepancy between water and elemental isotope signatures can be reconciled if meteoric water dissolved previously deposited marine sulfates supplying calcium and sulfate ions to the basin which maintained gypsum saturation. This recycling process accounts for the marine δ34S, δ18OSO4 and 87Sr/86Sr signatures, whereas the low δ18O and δD values of gypsum hydration water and fluid inclusion salinities reflect the influence of freshwater.
The cyclic deposition of gypsum and marl in the Yesares Member has previously been interpreted to reflect changing climate related to Earth’s precession cycle. We demonstrate that the δ18O, δD and salinity of the parent brine increased from low values at the base of Cycle 6 to a maximum in the massive gypsum palisade, and decreased again to lower values in the supercones at the
top of the cycle. This pattern, together with changes in mineralogy (calcite-dolomite-gypsum), is consistent with a precession-driven change in climate with wettest conditions (summer insolation maxima) associated with the base of the calcium carbonate marls and driest conditions (summer insolation minima) during formation of the gypsum palisade.The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 339694 (Water Isotopes of Hydrated Minerals) to D. A. Hodell.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.epsl.2015.07.07
Evidence for cavity-dwelling microbial life in 3.22 Ga tidal deposits
Cavities are considered plausible and favorable habitats for life on early Earth. In such microenvironments, organisms may have found an adequate protection against the intense ultraviolet radiation that characterized the Archean ozone-free atmosphere. However, while there is clear evidence that benthic life existed in the Paleoarchean, the oldest traces of cavity-dwelling microbes (coelobionts) have been found in Neoarchean rocks. Here we present the results of a detailed investigation of early silicified cavities occurring in the oldest well-preserved siliciclastic tidal deposits, the 3.22 Ga Moodies Group of the Barberton Greenstone Belt (South Africa). Downward-growing microstromatolitic columns composed of kerogenous laminae are commonly present in planar, bedding-parallel, now silica-filled cavities that formed in sediments of the peritidal zone. In-situ δ13CPDB (PDB—Peedee belemnite) measurements of the kerogen range from –32.3‰ to –21.3‰ and are consistent with a biogenic origin. Scanning electron microscopy analysis of the silicified cavities shows well-preserved chains of cell-sized molds that are interpreted as fossil filamentous microorganisms. The geological context, the morphology of the microstromatolites, the δ13C composition of the kerogen, and the presence of microfossils all suggest that a microbial community inhabited the cavities. These results extend the geological record of coelobionts by ∼500 m.y., supporting the view that cavities were among the first ecological niches to have been occupied by early microorganisms
Copper and its isotopes in organic-rich sediments: from the modern Peru Margin to Archean shales
The cycling of copper (Cu) and its isotopes in the modern ocean is controlled by the interplay of biology, redox settings, and organic complexation. To help build a robust understanding of Cu cycling in the modern ocean and investigate the potential processes controlling its behavior in the geological past, this study presents Cu abundance and isotope data from modern Peru Margin sediments as well as from a suite of ancient, mostly organic-rich, shales. Analyses of an organic-pyrite fraction extracted from bulk modern sediments suggest that sulphidation is the main control on authigenic Cu enrichments in this setting. This organic-pyrite fraction contains, in most cases, >50% of the bulk Cu reservoir. This is in contrast to ancient samples, for which a hydrogen fluoride (HF)-dissolvable fraction dominates the total Cu reservoir. With <20% of Cu found in the organic-pyrite fraction of most ancient sediments, interpretation of the associated Cu isotope composition is challenging, as primary signatures may be masked by secondary processes. But the Cu isotope composition of the organic-pyrite fraction in ancient sediments hints at the potential importance of a significant Cu(I) reservoir in ancient seawater, perhaps suggesting that the ancient ocean was characterized by different redox conditions and a different Cu isotope composition to that of the modern ocean
Models for resonant acoustic metasurfaces with application to moth wing ultrasound absorption
Taking as bioinspiration the remarkable acoustic absorption properties of moth wings, we develop a simple analytical model that describes the interaction between acoustic pressure fields, and thin elastic plates incorporating resonant sub-structures. The moth wing is an exemplar of a natural acoustic metamaterial; the wings are deeply subwavelength in thickness at the frequencies of interest, the absorption is broadband and the tiny scales resonate on the moth wing acting in concert. The simplified model incorporates only the essential physics and the scales are idealized to flat rigid rectangular plates coupled via a spring to an elastic plate that forms the wing; all the components are deep-subwavelength at desired frequencies. Based on Fourier analysis, complemented by phenomenological modelling, our theory shows excellent agreement with simulation mimicking the moth-wing structure. Moth wings operate as broadband sound absorbers employing a range of scale sizes. We demonstrate that a random distribution of scale sizes generates a broadband absorption spectrum. To further illustrate the potential of the model, we design a deeply sub-wavelength acoustic counterpart of electromagnetically induced reflectance
Similarities and differences in the dolomitization history of two coeval Middle Triassic carbonate platforms, Balaton Highland, Hungary
Dolomitization of platform carbonates is commonly the result of multiphase processes. Documentation of the complex dolomitization history is difficult if completely dolomitized sections are studied. Two Middle Anisian sections representing two coeval carbonate platforms were investigated and compared in the present study. Both sections are made up of meter-scale peritidal–lagoonal cycles with significant pedogenic overprint. One of the sections contains non-dolomitized, partially dolomitized, and completely dolomitized intervals, whereas the other is completely dolomitized. Based on investigations of the partially dolomitized section, penecontemporaneous dolomite formation and/or very early post-depositional dolomitization were identified in various lithofacies types. In shallow subtidal facies, porphyrotopic dolomite was found preferentially in microbial micritic fabrics. Microbially induced dolomite precipitation and/or progressive replacement of carbonate sediments could be interpreted for stromatolites. Cryptocrystalline to very finely crystalline dolomite, probably of pedogenic origin, was encountered in paleosoil horizons. Fabric-destructive dolomite commonly found below these horizons was likely formed via reflux of evaporated seawater. As a result of the different paleogeographic settings of the two platforms, their shallow-burial conditions were significantly different. One of the studied sections was located at the basinward platform margin where pervasive fabric-retentive dolomitization took place in a shallow-burial setting, probably via thermal convection. In contrast, in the area of the other, smaller platform shallow-water carbonates were covered by basinal deposits, preventing fluid circulation and accordingly pervasive shallow-burial dolomitization. In the intermediate to deep burial zone, recrystallization of partially dolomitized limestone and occlusion of newly opened fractures and pores by coarsely crystalline dolomite took place
Assessing the trophic ecology of three sympatric squid in the marine ecosystem off the Patagonian Shelf by combining stomach content and stable isotopic analyses
Squid species are important components of the Southern Atlantic Ocean ecosystems, as they
prey on a wide range of crustaceans, fish and cephalopods. As a result of this trophic
interaction and their high abundance, they are considered reliable indicators of energy
transfer and biomass in the food web. We identified Illex argentinus, Doryteuthis gahi and
Onykia ingens as the most important squid species interacting on the Patagonian shelf, and
used isotope analysis and stomach content identification to assess the feeding ecology and
interaction of these squids in the ecosystem. Our results describe trophic interactions by
direct predation of O. ingens and I. argentinus on D. gahi, and a trophic overlap of the three
squid, and indicate a higher trophic level and differences in the foraging areas for mature
and maturing D. gahi inferred through δ15N and δ13C concentrations. These differences were
related to the segregation and different habitat of large mature D. gahi and suggest a food
enrichment of C and N based on feeding sources other than those used by small maturing
D. gahi and I. argentinus and O. ingens.Versión del editor1,484
Anatomy of Heinrich Layer 1 and its role in the last deglaciation
X-ray fluorescence (XRF) core scanning and X-ray computed tomography data were measured every 1 mm to study the structure of Heinrich Event 1 during the last deglaciation at International Ocean Discovery Program Site U1308. Heinrich Layer 1 comprises two distinct layers of ice-rafted detritus (IRD), which are rich in detrital carbonate (DC) and poor in foraminifera. Each DC layer consists of poorly sorted, coarse-grained clasts of IRD embedded in a dense, fine-grained matrix of glacial rock flour that is partially cemented. The radiocarbon ages of foraminifera at the base of the two layers indicate a difference of 1400 C years, suggesting that they are two distinct events, but the calendar ages depend upon assumptions made for surface reservoir ages. The double peak indicates at least two distinct stages of discharge of the ice streams that drained the Laurentide Ice Sheet through Hudson Strait during HE1 or, alternatively, the discharge of two independent ice streams containing detrital carbonate. Heinrich Event 1.1 was the larger of the two events and began at ~16.2 ka (15.5–17.1 ka) when the polar North Atlantic was already cold and Atlantic Meridional Overturning Circulation (AMOC) weakened. The younger peak (H1.2) at ~15.1 ka (14.3 to 15.9 ka) was a weaker event than H1.1 that was accompanied by minor cooling. Our results support a complex history for Heinrich Stadial 1 (HS1) with reduction in AMOC during the early part (~20–16.2 ka) possibly driven by melting of European ice sheets, whereas the Laurentide Ice Sheet assumed a greater role during the latter half (~16.2–14.7 ka).This research used data acquired at the XRF Core Scanner Lab at the MARUM–Center for Marine Environmental Sciences, University of Bremen, Germany. This research used samples provided by the International Ocean Discovery Program (IODP). Funding for this research was provided by the UK Natural Environmental Research Council (NERC) to Hodell. The NERC Radiocarbon Facility supported two radiocarbon dates, and Wally Broecker generously supported the remainder with funding from the Comer Family Foundation. Research by RodrÃguez-Tovar and Dorador was financed by Project CGL2015-66835-P. B.M. acknowledges support from the CSIC-Ramón y Cajal postdoctoral programme RYC-2013-14073. J.F.E. would like to acknowledge funding under ERC Advanced grant 320750- Nanopaleomagnetism
- …