52 research outputs found

    Stem-Loop Recognition by DDX17 Facilitates miRNA Processing and Antiviral Defense

    Get PDF
    SummaryDEAD-box helicases play essential roles in RNA metabolism across species, but emerging data suggest that they have additional functions in immunity. Through RNAi screening, we identify an evolutionarily conserved and interferon-independent role for the DEAD-box helicase DDX17 in restricting Rift Valley fever virus (RVFV), a mosquito-transmitted virus in the bunyavirus family that causes severe morbidity and mortality in humans and livestock. Loss of Drosophila DDX17 (Rm62) in cells and flies enhanced RVFV infection. Similarly, depletion of DDX17 but not the related helicase DDX5 increased RVFV replication in human cells. Using crosslinking immunoprecipitation high-throughput sequencing (CLIP-seq), we show that DDX17 binds the stem loops of host pri-miRNA to facilitate their processing and also an essential stem loop in bunyaviral RNA to restrict infection. Thus, DDX17 has dual roles in the recognition of stem loops: in the nucleus for endogenous microRNA (miRNA) biogenesis and in the cytoplasm for surveillance against structured non-self-elements

    Mechanisms of coronavirus pathogenicity and virus-host interactions

    Get PDF
    Trabajo presentado en la Conference on the Cooperation and Collaboration on Prevention and Control of Animal Diseases, celebrada en Hangzhou (China), del 21 al 23 de mayo de 2019Coronaviruses (CoVs) are important human and animal pathogens mainly causing respiratory and enteric infections with diverse severity. The presence of CoVs in bats, as animal reservoirs, and their ability for interspecies transmission have recently led to the emergence of novel CoVs responsible for epidemics in humans and livestock. In order to develop protection strategies against CoV infections, our laboratory is interested in the identification of (i) Viral factors involved in virulence and (ii) Host signaling pathways contributing to pathogenesis, using human coronaviruses SARS- and MERS-CoVs as model systems

    Disulfiram inhibits neutrophil extracellular trap formation protecting rodents from acute lung injury and SARS-CoV-2 infection.

    Get PDF
    Severe acute lung injury has few treatment options and a high mortality rate. Upon injury, neutrophils infiltrate the lungs and form neutrophil extracellular traps (NETs), damaging the lungs and driving an exacerbated immune response. Unfortunately, no drug preventing NET formation has completed clinical development. Here, we report that disulfiram -an FDA-approved drug for alcohol use disorder- dramatically reduced NETs, increased survival, improved blood oxygenation, and reduced lung edema in a transfusion-related acute lung injury (TRALI) mouse model. We then tested whether disulfiram could confer protection in the context of SARS-CoV-2 infection, as NETs are elevated in patients with severe COVID-19. In SARS-CoV-2-infected golden hamsters, disulfiram reduced NETs and perivascular fibrosis in the lungs, and downregulated innate immune and complement/coagulation pathways, suggesting that it could be beneficial for COVID-19 patients. In conclusion, an existing FDA-approved drug can block NET formation and improve disease course in two rodent models of lung injury for which treatment options are limited

    Unanchored K48-Linked Polyubiquitin Synthesized by the E3-Ubiquitin Ligase TRIM6 Stimulates the Interferon-IKKε Kinase-Mediated Antiviral Response.

    Get PDF
    Type I interferons (IFN-I) are essential antiviral cytokines produced upon microbial infection. IFN-I elicits this activity through the upregulation of hundreds of IFN-I-stimulated genes (ISGs). The full breadth of ISG induction demands activation of a number of cellular factors including the IκB kinase epsilon (IKKε). However, the mechanism of IKKε activation upon IFN receptor signaling has remained elusive. Here we show that TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family of proteins, interacted with IKKε and promoted induction of IKKε-dependent ISGs. TRIM6 and the E2-ubiquitin conjugase UbE2K cooperated in the synthesis of unanchored K48-linked polyubiquitin chains, which activated IKKε for subsequent STAT1 phosphorylation. Our work attributes a previously unrecognized activating role of K48-linked unanchored polyubiquitin chains in kinase activation and identifies the UbE2K-TRIM6-ubiquitin axis as critical for IFN signaling and antiviral response

    Replication in Cells of Hematopoietic Origin Is Necessary for Dengue Virus Dissemination

    Get PDF
    Dengue virus (DENV) is a mosquito-borne pathogen for which no vaccine or specific therapeutic is available. Although it is well established that dendritic cells and macrophages are primary sites of DENV replication, it remains unclear whether non-hematopoietic cellular compartments serve as virus reservoirs. Here, we exploited hematopoietic-specific microRNA-142 (miR-142) to control virus tropism by inserting tandem target sites into the virus to restrict replication exclusively in this cell population. In vivo use of this virus restricted infection of CD11b+, CD11c+, and CD45+ cells, resulting in a loss of virus spread, regardless of the route of administration. Furthermore, sequencing of the targeted virus population that persisted at low levels, demonstrated total excision of the inserted miR-142 target sites. The complete conversion of the virus population under these selective conditions suggests that these immune cells are the predominant sources of virus amplification. Taken together, this work highlights the importance of hematopoietic cells for DENV replication and showcases an invaluable tool for the study of virus pathogenesis

    Recognition of the Measles Virus Nucleocapsid as a Mechanism of IRF-3 Activation

    No full text
    The mechanisms of cellular recognition for virus infection remain poorly understood despite the wealth of information regarding the signaling events and transcriptional responses that ensue. Host cells respond to viral infection through the activation of multiple signaling cascades, including the activation of NF-ÎşB, c-Jun/ATF-2 (AP-1), and the interferon regulatory factors (IRFs). Although viral products such as double-stranded RNA (dsRNA) and the processes of viral binding and fusion have been implicated in the activation of NF-ÎşB and AP-1, the mechanism(s) of IRF-1, IRF-3, and IRF-7 activation has yet to be fully elucidated. Using recombinant measles virus (MeV) constructs, we now demonstrate that phosphorylation-dependent IRF-3 activation represents a novel cellular detection system that recognizes the MeV nucleocapsid structure. At low multiplicities of infection, IRF-3 activation is dependent on viral transcription, since UV cross-linking and a deficient MeV containing a truncated polymerase L gene failed to induce IRF-3 phosphorylation. Expression of the MeV nucleocapsid (N) protein, without the requirement for any additional viral proteins or the generation of dsRNA, was sufficient for IRF-3 activation. In addition, the nucleocapsid protein was found to associate with both IRF-3 and the IRF-3 virus-activated kinase, suggesting that it may aid in the colocalization of the kinase and the substrate. Altogether, this study suggests that IRF-3 recognizes nucleocapsid structures during the course of an MeV infection and triggers the induction of interferon production

    DENV-2 does not block miRNA function.

    No full text
    <p>(A) Fluorescence microscopy of human fibroblasts cotransfected with a plasmid expressing GFP targeted by miR-142 (pEGFP-142t) and either a construct expressing miR-142 (p142) or an empty vector control (vector). Cells were mock treated or infected with DENV-2 at an MOI of 1 48 hrs prior to analysis. (B) Fluorescence-activated cell sorting of samples treated as in (A). (C) Quantitative RT-PCR on samples described in (A). Data depicted as NS5 over tubulin levels. (Statistical significance: ****, P<0.0001, ***, P<0.001).</p
    • …
    corecore