36 research outputs found

    Competition among small individuals hinders adaptive radiation despite ecological opportunity.

    Get PDF
    Ontogenetic diet shifts, where individuals change their resource use during development, are the rule rather than the exception in the animal world. Here, we aim to understand how such changes in diet during development affect the conditions for an adaptive radiation in the presence of ecological opportunity. We use a size-structured consumer-resource model and the adaptive dynamics approach to study the ecological conditions for speciation. We assume that small individuals all feed on a shared resource. Large individuals, on the other hand, have access to multiple food sources on which they can specialize. We find that competition among small individuals can hinder an adaptive radiation to unfold, despite plenty of ecological opportunity for large individuals. When small individuals experience strong competition for food, they grow slowly and only a few individuals are recruited to the larger size classes. Hence, competition for food among large individuals is weak and there is therefore no disruptive selection. In addition, initial conditions determine if an adaptive radiation occurs or not. A consumer population initially dominated by small individuals will not radiate. On the other hand, a population initially dominated by large individuals may undergo adaptive radiation and diversify into multiple species

    Migratory-derived resources induce elongated food chains through middle-up food web effects.

    Get PDF
    BACKGROUND Seasonal movements of animals often result in the transfer of large amounts of energy and nutrients across ecosystem boundaries, which may have large consequences on local food webs through various pathways. While this is known for both terrestrial- and aquatic organisms, quantitative estimates on its effects on food web structure and identification of key pathways are scarce, due to the difficulty in obtaining replication on ecosystem level with negative control, i.e. comparable systems without migration. METHODS In this study, we estimate the impact of Arctic charr (Salvelinus alpinus) migration on riverine ecosystem structure, by comparing multiple streams with strictly resident populations above natural migration barriers with streams below those barriers harboring partially migratory populations. We compared density estimates and size structure between above and below populations. Diet differences were examined through the analysis of stomach contents, changes in trophic position were examined by using stable isotopes. To infer growth rate of resident individuals, back-growth calculation was performed using otoliths. RESULTS We find higher densities of small juveniles in partially migratory populations, where juvenile Arctic charr show initially lower growth, likely due to higher intraspecific competition. After reaching a size, where they can start feeding on eggs and smaller juveniles, which are both more frequent in partially migratory populations, growth surpasses that of resident populations. Cannibalism induced by high juvenile densities occurred almost exclusively in populations with migration and represents an altered energy pathway to the food web. The presence of large cannibalistic charr feeding on smaller ones that have a similar trophic level as charr from strictly resident populations (based on stomach content) coupled with steeper ÎŽ15N-size regression slopes illustrate the general increase of food chain length in systems with migration. CONCLUSIONS Our results thus suggest that the consumption of migration-derived resources may result in longer food chains through middle-up rather than bottom-up effects. Furthermore, by occupying the apex of the food chain and feeding on juvenile conspecifics, resident individuals experience reduced competition with their young counterparts, which potentially balances their fitness with migratory individuals

    Do intraspecific or interspecific interactions determine responses to predators feeding on a shared size‐structured prey community?

    Get PDF
    Summary Coexistence of predators that share the same prey is common. This is still the case in size‐structured predator communities where predators consume prey species of different sizes (interspecific prey responses) or consume different size classes of the same species of prey (intraspecific prey responses). A mechanism has recently been proposed to explain coexistence between predators that differ in size but share the same prey species, emergent facilitation, which is dependent on strong intraspecific responses from one or more prey species. Under emergent facilitation, predators can depend on each other for invasion, persistence or success in a size‐structured prey community. Experimental evidence for intraspecific size‐structured responses in prey populations remains rare, and further questions remain about direct interactions between predators that could prevent or limit any positive effects between predators [e.g. intraguild predation (IGP)]. Here, we provide a community‐wide experiment on emergent facilitation including natural predators. We investigate both the direct interactions between two predators that differ in body size (fish vs. invertebrate predator), and the indirect interaction between them via their shared prey community (zooplankton). Our evidence supports the most likely expectation of interactions between differently sized predators that IGP rates are high, and interspecific interactions in the shared prey community dominate the response to predation (i.e. predator‐mediated competition). The question of whether emergent facilitation occurs frequently in nature requires more empirical and theoretical attention, specifically to address the likelihood that its pre‐conditions may co‐occur with high rates of IGP. </jats:p

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Disentangling Verbal Arguments: Intralocus Sexual Conflict in Haplodiploids

    Get PDF
    In haplodiploids, (1) alleles spend twice as many generations in females as in males, (2) males are never heterozygous and therefore express recessive alleles, and (3) males sire daughters but not sons. Intralocus sexual conflict therefore operates differently in haplodiploids than in diploids and shares strong similarities with loci on X (or Z) chromosomes. The common co-occurrence of all three features makes it difficult to pinpoint their respective roles. However, they do not always co-occur in nature, and missing cases can be additionally studied with hypothetical life cycles. We model sexually antagonistic alleles in eight different sex determination systems and find that arguments 1 and 2 promote invasion and fixation of female-beneficial and male-beneficial alleles, respectively; argument 2 also improves prospects for polymorphism. Argument 3 harms the invasion prospects of sexually antagonistic alleles (irrespective of which sex benefits) but promotes fixation should invasion nevertheless occur. Disentangling the features helps to evaluate the validity of previous verbal arguments and yields better-informed predictions about intralocus sexual conflict under different sex determination systems, including hitherto undiscovered ones

    Optimal germination timing in unpredictable environments: the importance of dormancy for both among‐ and within‐season variation

    Full text link
    For organisms living in unpredictable environments, timing important life-history events is challenging. One way to deal with uncertainty is to spread the emergence of offspring across multiple years via dormancy. However, timing of emergence is not only important among years, but also within each growing season. Here, we study the evolutionary interactions between germination strategies that deal with among- and within-season uncertainty. We use a modelling approach that considers among-season dormancy and within-season germination phenology of annual plants as potentially independent traits and study their separate and joint evolution in a variable environment. We find that higher among-season dormancy selects for earlier germination within the growing season. Furthermore, our results indicate that more unpredictable natural environments can counter-intuitively select for less risk-spreading within the season. Furthermore, strong priority effects select for earlier within-season germination phenology which in turn increases the need for bet hedging through among-season dormancy

    Optimal germination timing in unpredictable environments: the importance of dormancy for both among‐ and within‐season variation

    No full text
    For organisms living in unpredictable environments, timing important life-history events is challenging. One way to deal with uncertainty is to spread the emergence of offspring across multiple years via dormancy. However, timing of emergence is not only important among years, but also within each growing season. Here, we study the evolutionary interactions between germination strategies that deal with among- and within-season uncertainty. We use a modelling approach that considers among-season dormancy and within-season germination phenology of annual plants as potentially independent traits and study their separate and joint evolution in a variable environment. We find that higher among-season dormancy selects for earlier germination within the growing season. Furthermore, our results indicate that more unpredictable natural environments can counter-intuitively select for less risk-spreading within the season. Furthermore, strong priority effects select for earlier within-season germination phenology which in turn increases the need for bet hedging through among-season dormancy
    corecore