743 research outputs found

    Common and unique features of viral RNA-dependent polymerases.

    Get PDF
    Eukaryotes and bacteria can be infected with a wide variety of RNA viruses. On average, these pathogens share little sequence similarity and use different replication and transcription strategies. Nevertheless, the members of nearly all RNA virus families depend on the activity of a virally encoded RNA-dependent polymerase for the condensation of nucleotide triphosphates. This review provides an overview of our current understanding of the viral RNA-dependent polymerase structure and the biochemistry and biophysics that is involved in replicating and transcribing the genetic material of RNA viruses

    Linking Fold, Function and Phylogeny: A Comparative Genomics View on Protein (Domain) Evolution

    Get PDF
    Domains are the building blocks of all globular proteins and present one of the most useful levels at which protein function can be understood. Through recombination and duplication of a limited set of domains, proteomes evolved and the collection of protein superfamilies in an organism formed. As such, the presence of a shared domain can be regarded as an indicator of similar function and evolutionary history, but it does not necessarily imply it since convergent evolution may give rise to similar gene functions as well as architectures

    Measurement of free light chains with assays based on monoclonal antibodies

    Get PDF
    Recently, serum free light chain (FLC) assays incorporating anti-kappa (κ) and anti-lambda (λ) FLC monoclonal antibodies have become available: N Latex FLC assay (Siemens) and Seralite® (Abingdon Health). The purpose of this review is to provide an overview of these two new monoclonal antibody-based methods. In doing so, the review will outline the performance characteristics of each method, including a summary of: assay principles, antibody specificity, analytical performance and assay performance in disease. Additionally, the review will describe the potential user benefits of adopting these new generation FLC assays, which are designed to overcome the established limitations of existing polyclonal antibody based FLC assay

    The Nature of Protein Domain Evolution: Shaping the Interaction Network

    Get PDF
    The proteomes that make up the collection of proteins in contemporary organisms evolved through recombination and duplication of a limited set of domains. These protein domains are essentially the main components of globular proteins and are the most principal level at which protein function and protein interactions can be understood. An important aspect of domain evolution is their atomic structure and biochemical function, which are both specified by the information in the amino acid sequence. Changes in this information may bring about new folds, functions and protein architectures. With the present and still increasing wealth of sequences and annotation data brought about by genomics, new evolutionary relationships are constantly being revealed, unknown structures modeled and phylogenies inferred. Such investigations not only help predict the function of newly discovered proteins, but also assist in mapping unforeseen pathways of evolution and reveal crucial, co-evolving inter- and intra-molecular interactions. In turn this will help us describe how protein domains shaped cellular interaction networks and the dynamics with which they are regulated in the cell. Additionally, these studies can be used for the design of new and optimized protein domains for therapy. In this review, we aim to describe the basic concepts of protein domain evolution and illustrate recent developments in molecular evolution that have provided valuable new insights in the field of comparative genomics and protein interaction networks

    Molecular evolution of the MAGUK family in metazoan genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Development, differentiation and physiology of metazoans all depend on cell to cell communication and subsequent intracellular signal transduction. Often, these processes are orchestrated via sites of specialized cell-cell contact and involve receptors, adhesion molecules and scaffolding proteins. Several of these scaffolding proteins important for synaptic and cellular junctions belong to the large family of membrane-associated guanylate kinases (MAGUK). In order to elucidate the origin and the evolutionary history of the MAGUKs we investigated full-length cDNA, EST and genomic sequences of species in major phyla.</p> <p>Results</p> <p>Our results indicate that at least four of the seven MAGUK subfamilies were present in early metazoan lineages, such as Porifera. We employed domain sequence and structure based methods to infer a model for the evolutionary history of the MAGUKs. Notably, the phylogenetic trees for the guanylate kinase (GK)-, the PDZ- and the SH3-domains all suggested a matching evolutionary model which was further supported by molecular modeling of the 3D structures of different GK domains. We found no MAGUK in plants, fungi or other unicellular organisms, which suggests that the MAGUK core structure originated early in metazoan history.</p> <p>Conclusion</p> <p>In summary, we have characterized here the molecular and structural evolution of the large MAGUK family. Using the MAGUKs as an example, our results show that it is possible to derive a highly supported evolutionary model for important multidomain families by analyzing encoded protein domains. It further suggests that larger superfamilies encoded in the different genomes can be analyzed in a similar manner.</p
    corecore