12,339 research outputs found

    Greening Capitalism? A Marxist Critique of Carbon Markets

    Get PDF
    Climate change is increasingly being recognized as a serious threat to dominant modes of social organization, inspiring suggestions that capitalism itself needs to be transformed if we are to ‘decarbonize’ the global economy. Since the Kyoto Protocol in 1997, carbon markets have emerged as the main politico-economic tools in global efforts to address climate change. Newell and Paterson (2010) have recently claimed that the embrace of carbon markets by financial and political elites constitutes a possible first step towards the transformation of current modes of capitalist organization into a new form of greener, more sustainable ‘climate capitalism.’ In this paper, we argue that the institutionalization of carbon markets does not, in fact, represent a move towards the radical transformation of capitalism, but is better understood as the most recent expression of ongoing trends of ecological commodification and expropriation, driving familiar processes of uneven and crisis-prone development. In this paper, we review four critical Marxist concepts: metabolic rift (Foster, 1999), capitalism as world ecology (Moore, 2011a), uneven development and accumulation through dispossession (Harvey, 2003, 2006), and sub-imperialism (Marini, 1972, 1977), developing a framework for a Marxist analysis of carbon markets. Our analysis shows that carbon markets form part of a longer historical development of global capitalism and its relation to nature. Carbon markets, we argue, serve as creative new modes of accumulation, but are unlikely to transform capitalist dynamics in ways that might foster a more sustainable global economy. Our analysis also elucidates, in particular, the role that carbon markets play in exacerbating uneven development within the Global South, as elites in emerging economies leverage carbon market financing to pursue new strategies of sub-imperial expansion. </jats:p

    Blood pressure changes after renal denervation at 10 European expert centers

    Get PDF
    We did a subject-level meta-analysis of the changes (Δ) in blood pressure (BP) observed 3 and 6 months after renal denervation (RDN) at 10 European centers. Recruited patients (n=109; 46.8% women; mean age 58.2 years) had essential hypertension confirmed by ambulatory BP. From baseline to 6 months, treatment score declined slightly from 4.7 to 4.4 drugs per day. Systolic/diastolic BP fell by 17.6/7.1 mm Hg for office BP, and by 5.9/3.5, 6.2/3.4, and 4.4/2.5 mm Hg for 24-h, daytime and nighttime BP (P0.03 for all). In 47 patients with 3- and 6-month ambulatory measurements, systolic BP did not change between these two time points (P0.08). Normalization was a systolic BP of &#60;140 mm Hg on office measurement or &#60;130 mm Hg on 24-h monitoring and improvement was a fall of 10 mm Hg, irrespective of measurement technique. For office BP, at 6 months, normalization, improvement or no decrease occurred in 22.9, 59.6 and 22.9% of patients, respectively; for 24-h BP, these proportions were 14.7, 31.2 and 34.9%, respectively. Higher baseline BP predicted greater BP fall at follow-up; higher baseline serum creatinine was associated with lower probability of improvement of 24-h BP (odds ratio for 20-μmol l(-1) increase, 0.60; P=0.05) and higher probability of experiencing no BP decrease (OR, 1.66; P=0.01). In conclusion, BP responses to RDN include regression-to-the-mean and remain to be consolidated in randomized trials based on ambulatory BP monitoring. For now, RDN should remain the last resort in patients in whom all other ways to control BP failed, and it must be cautiously used in patients with renal impairment

    Measurement of the absolute branching ratios for semileptonic K+/- decays with the KLOE detector

    Full text link
    Using a sample of over 600 million phi->K+K- decays collected at the Dafne e+e- collider, we have measured with the KLOE detector the absolute branching ratios for the charged kaon semileptonic decays, K+/- -> p0 e nu (gamma) (Ke3) and K+/- -> p0 mu nu (gamma) (Kmu3). The results, BR(Ke3) = 0.04965 +/- 0.00038_{stat} +/- 0.00037_{syst} and BR(Kmu3) = 0.03233 +/- 0.00029_{stat} +/- 0.00026_{syst}, are inclusive of radiation. Accounting for correlations, we derive the ratio Kmu3/Ke3 = 0.6511+/-0.0064. Using the semileptonic form factors measured in the same experiment, we obtain V_{us}f_{+}(0) = 0.2141 +/- 0.0013.Comment: 13 pages, 3 figures, submitted to JHEP. v2: minor revisions required by JHEP, v3: final version published by JHEP (replacement of 2 incorrect affiliations)link: http://www.iop.org/EJ/abstract/1029-8479/2008/02/09

    Vus and lepton universality from kaon decays with the KLOE detector

    Get PDF
    KLOE has measured most decay branching ratios of Ks, Kl and K+/- mesons. It has also measured the Kl and the K+- lifetime and determined the shape of the form factors involved in kaon semileptonic decays. We present in the following a description of the above measurements and a well organized compendium of all of our data, with particular attention to correlations. These data provide the basis for the determination of the CKM parameter Vus and a test of the unitarity of the quark flavor mixing matrix. We also test lepton universality and place bounds on new physics using measurements of Vus from Kl2 and Kl3 decays.Comment: 23 pages, 12 figures. Submitted to JHE

    Fermion Representation Of The Rolling Tachyon Boundary Conformal Field Theory

    Full text link
    A free fermion representation of the rolling tachyon boundary conformal field theory is constructed. The representation is used to obtain an explicit, compact, exact expression for the boundary state. We use the boundary state to compute the disc and cylinder amplitudes for the half-S-brane.Comment: 27 page

    The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen.

    Get PDF
    The mechanism of formation of the formyl group of chlorophyll b has long been obscure but, in this paper, the origin of the 7-formyl-group oxygen of chlorophyll b in higher plants was determined by greening etiolated maize leaves, excised from dark-grown plants, by illumination under white light in the presence of either H218O or 18O2 and examining the newly synthesized chlorophylls by mass spectroscopy. To minimize the possible loss of 18O label from the 7-formyl substituent by reversible formation of chlorophyll b-71-gem-diol (hydrate) with unlabelled water in the cell, the formyl group was reduced to a hydroxymethyl group during extraction with methanol containing NaBH4: chlorophyll a remained unchanged during this rapid reductive extraction process. Mass spectra of chlorophyll a and [7-hydroxymethyl]-chlorophyll b extracted from leaves greened in the presence of either H218O or 18O2 revealed that 18O was incorporated only from molecular oxygen but into both chlorophylls: the mass spectra were consistent with molecular oxygen providing an oxygen atom not only for incorporation into the 7-formyl group of chlorophyll b but also for the well-documented incorporation into the 131-oxo group of both chlorophylls a and b [see Walker, C. J., Mansfield, K. E., Smith, K. M. & Castelfranco, P. A. (1989) Biochem. J. 257, 599–602]. The incorporation of isotope led to as much as 77% enrichment of the 131-oxo group of chlorophyll a: assuming identical incorporation into the 131 oxygen of chlorophyll b, then enrichment of the 7-formyl oxygen was as much as 93%. Isotope dilution by re-incorporation of photosynthetically produced oxygen from unlabelled water was negligible as shown by a greening experiment in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The high enrichment using 18O2, and the absence of labelling by H218O, unequivocally demonstrates that molecular oxygen is the sole precursor of the 7-formyl oxygen of chlorophyll b in higher plants and strongly suggests a single pathway for the formation of the chlorophyll b formyl group involving the participation of an oxygenase-type enzyme

    Constraints on charged Higgs bosons from D(s)+- -> mu+- nu and D(s)+- -> tau+- nu

    Full text link
    The decays D(s)+- -> mu+- nu and D(s)+- -> tau+- nu have traditionally been used to measure the D(s)+- meson decay constant f_D(s). Recent measurements at CLEO-c and the B factories suggest a branching ratio for both decays somewhat higher than the Standard Model prediction using f_D(s) from unquenched lattice calculations. The charged Higgs boson (H+-) in the Two Higgs Doublet Model (Type II) would also mediate these decays, but any sizeable contribution from H+- can only suppress the branching ratios and consequently is now slightly disfavoured. It is shown that constraints on the parameters tan(beta) and m_H+- from such decays can be competitive with and complementary to analogous constraints derived from the leptonic meson decays B+- -> tau+- nu_tau and K+- -> mu+- nu_mu, especially if lattice calculations eventually prefer f_D(s) < 250 MeV.Comment: 18 pages, 4 figure

    A quark model framework for the study of nuclear medium effects

    Full text link
    A quark-model framework for studying nuclear medium effects on nucleon resonances is described and applied here to pion photoproduction on the deuteron, which is the simplest composite nucleon system and serves as a first test case. Pion photoproduction on nuclei is discussed within a chiral constituent quark model in which the quark degrees of freedom are explicitly introduced through an effective chiral Lagrangian for the quark-pseudoscalar-meson coupling. The advantage of this model is that a complete set of nucleon resonances can be systematically included with a limited number of parameters. Also, the systematic description of the nucleon and its resonances at quark level allows us to self-consistently relate the nuclear medium's influence on the baryon properties to the intrinsic dynamic aspects of the baryons. As the simplest composite nucleus, the deuteron represents the first application of this effective theory for meson photoproduction on light nuclei. The influence of the medium on the transition operators for a free nucleon is investigated in the Delta resonance region. No evidence is found for a change of the Delta properties in the pion photoproduction reaction on the deuteron since the nuclear medium here involves just one other nucleon and the low binding energy implies low nuclear density. However, we show that the reaction mechanism is in principle sensitive to changes of Delta properties that would be produced by the denser nuclear medium of heavier nuclei through the modification of the quark model parameters.Comment: Revtex, 8 pages, 4 figure

    Probing Yukawa Unification with K and B Mixing

    Full text link
    We consider corrections to the unification of down-quark and charged-lepton Yukawa couplings in supersymmetric GUTs, which links the large nu_tau-nu_mu mixing angle to b -> s transitions. These corrections generically occur in simple grand-unified models with small Higgs representations and affect s -> d and b -> d transitions via the mixing of the corresponding right-handed superpartners. On the basis of a specific SUSY-SO(10) model, we analyze the constraints from K-Kbar and B-Bbar mixing on the additional \tilde{d}_R-\tilde{s}_R rotation angle theta. We find that epsilon_K already sets a stringent bound on theta, theta^{max}=O(1 degree), indicating a very specific flavor structure of the correction operators. The impact of the large neutrino mixings on the unitarity triangle analysis is also briefly discussed, as well as their ability to account for the sizeable CP-violating phase observed recently in B_s -> psi phi decays.Comment: 19 pages. Discussion in Sec. 5.2 slightly extended; minor numerical modifications in Secs. 5.1 to 5.4, conclusions unchanged. Version to appear in JHE
    corecore