40,557 research outputs found

    Nuclear reactions induced by high-energy alpha particles

    Get PDF
    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue

    Accelerator measurement of the energy spectra of neutrons emitted in the interaction of 3-GeV protons with several elements

    Get PDF
    The application of time of flight techniques for determining the shapes of the energy spectra of neutrons between 20 and 400 MeV is discussed. The neutrons are emitted at 20, 34, and 90 degrees in the bombardment of targets by 3 GeV protons. The targets used are carbon, aluminum, cobalt, and platinum with cylindrical cross section. Targets being bombarded are located in the internal circulating beam of a particle accelerator

    Possible ΔΔ\Delta\Delta dibaryons in the quark cluster model

    Full text link
    In the framework of RGM, the binding energy of one channel ΔΔ(3,0)\Delta\Delta_{(3,0)}(dd^*) and ΔΔ(0,3)\Delta\Delta_{(0,3)} are studied in the chiral SU(3) quark cluster model. It is shown that the binding energies of the systems are a few tens of MeV. The behavior of the chiral field is also investigated by comparing the results with those in the SU(2) and the extended SU(2) chiral quark models. It is found that the symmetry property of the ΔΔ\Delta\Delta system makes the contribution of the relative kinetic energy operator between two clusters attractive. This is very beneficial for forming the bound dibaryon. Meanwhile the chiral-quark field coupling also plays a very important role on binding. The S-wave phase shifts and the corresponding scattering lengths of the systems are also given.Comment: LeTex with 2 ps figure

    Material and doping dependence of the nodal and anti-nodal dispersion renormalizations in single- and multi-layer cuprates

    Full text link
    In this paper we present a review of bosonic renormalization effects on electronic carriers observed from angle-resolved photoemission spectra in the cuprates. We specifically discuss the viewpoint that these renormalizations represent coupling of the electrons to the lattice, and review how the wide range of materials dependence, such as the number of CuO2_2 layers, and the doping dependence can be straightforwardly understood as arising due to novel electron-phonon coupling.Comment: 9 pages and 6 figures. Submitted as a review article for Advances in Condensed Matter Physic

    Unified theory of phase separation and charge ordering in doped manganite perovskites

    Full text link
    A unified theory is developed to explain various types of electronic collective behaviors in doped manganites R1x_{1-x}Xx_xMnO3_3 (R = La, Pr,Nd etc. and X = Ca, Sr, Ba etc.). Starting from a realistic electronic model, we derive an effective Hamiltonianis by ultilizing the projection perturbation techniques and develop a spin-charge-orbital coherent state theory, in which the Jahn-Teller effect and the orbital degeneracy of eg_g electrons in Mn ions are taken into account. Physically, the experimentally observed charge ordering state and electronic phase separation are two macroscopic quantum phenomena with opposite physical mechanisms, and their physical origins are elucidated in this theory. Interplay of the Jahn-Teller effect, the lattice distortion as well as the double exchange mechanism leads to different magnetic structures and to different charge ordering patterns and phase separation.Comment: 10 ReVTEX pages with 4 figures attache

    X-ray Insights into the Nature of Quasars with Redshifted Broad Absorption Lines

    Full text link
    We present ChandraChandra observations of seven broad absorption line (BAL) quasars at z=0.863z=0.863-2.516 with redshifted BAL troughs (RSBALs). Five of our seven targets were detected by ChandraChandra in 4-13 ks exposures with ACIS-S. The αox\alpha_{\rm ox} values, Δαox\Delta\alpha_{\rm ox} values, and spectral energy distributions of our targets demonstrate they are all X-ray weak relative to expectations for non-BAL quasars, and the degree of X-ray weakness is consistent with that of appropriately-matched BAL quasars generally. Furthermore, our five detected targets show evidence for hard X-ray spectral shapes with a stacked effective power-law photon index of Γeff=0.50.4+0.5\Gamma_{\rm eff}=0.5^{+0.5}_{-0.4}. These findings support the presence of heavy X-ray absorption (NH2×1023N_{\rm H}\approx 2 \times 10^{23} cm2^{-2}) in RSBAL quasars, likely by the shielding gas found to be common in BAL quasars more generally. We use these X-ray measurements to assess models for the nature of RSBAL quasars, finding that a rotationally-dominated outflow model is favored while an infall model also remains plausible with some stipulations. The X-ray data disfavor a binary quasar model for RSBAL quasars in general.Comment: 11 pages, 5 figures, and 3 table

    SU(4) Spin-Orbital Two-Leg Ladder, Square and Triangle Lattices

    Get PDF
    Based on the generalized valence bond picture, a Schwinger boson mean field theory is applied to the symmetric SU(4) spin-orbital systems. For a two-leg SU(4) ladder, the ground state is a spin-orbital liquid with a finite energy gap, in good agreement with recent numerical calculations. In two-dimensional square and triangle lattices, the SU(4) Schwinger bosons condense at (\pi/2,\pi/2) and (\pi/3,\pi/3), respectively. Spin, orbital, and coupled spin-orbital static susceptibilities become singular at the wave vectors, twice of which the bose condensation arises at. It is also demonstrated that there are spin, orbital, and coupled spin-orbital long-range orderings in the ground state.Comment: 5 page
    corecore