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Based on the generalized valence bond picture, a Schwinger boson mean-field theory is applied to the
symmetric SW4) spin-orbital systems. For a two-leg 81)ladder, the ground state is a spin-orbital liquid with
a finite energy gap, in good agreement with recent numerical calculations. In two-dimensional square and
triangle lattices, the S4) Schwinger bosons condense at'2,7/2) and (/3,7/3), respectively. Spin, orbital,
and coupled spin-orbital static susceptibilities become singular at the wave vectors; the Bose condensation
arises at twice this value. It is also demonstrated that there are spin, orbital, and coupled spin-orbital long-range
orderings in the ground state.
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Recently the properties of spin systems with orbital de-mean-field theory. The ground state of the system can be
generacy are attracting a lot of attentforBeveral spin- either ordered or disordered, depending on the dimensional-
orbital models are proposed in various kinds of materialsity and lattice topological structure. In a two-leg ladder sys-
such as G,? NiLiO3,® NaTi,ShO,* and LaMnQ.® The  tem, we find that the ground state is a spin liquid state with a
interplay of spin and orbital degrees of freedom produces ndfinite energy gap, which is in good agreement with recent
only new magnetic structure phases but also novel quantuMumerical calculations by van den Bossé¢hén square and
ordered and disordered states such as the orbital densiﬁ,ﬁfjmg|e lattices, the Schwinger bosons condense at zero tem-
wave and spin-orbital Ii%gids. A simplified and symmetric peratures, i.e., the Bose-Einstein condensaBEC) occurs
model for these systemsis and is identified as the indication of long-range or€RO)

in the ground state. The relation between BEC and LRO is

HZE 2 JA2S-S, s+ 12 (2T Tins+1/2), (1) illustrated explicitly_ir! _s_pin, orpital, and spin-prbital static
2% transverse susceptibilities, which become singular at the

) ) wave vectors €/2,7/2) and (@/3,7/3) for the respective

where the operatoiSandT are SU2) Pauli matrices for the ., a1 and triangle lattices, leading to finite staggered mag-
Spin 'and orbital degrees O.f freedpm, 'respec.tlvely. The VeCtQlatizations for the spin, orbital, and coupled spin-orbital den-
4 points to the nearest-neighboring sites. It is already Imow'%ities in the thermodynamic limit. Thus, three Goldstone
t_hat the model POSSESSES (&Usymmetry, an(_JI can be de- modes are found. According to the calculated susceptibilities,
rived from a quarter-filled electronic model with twofold or- he spin, orbital, and spin-orbital LROs may coexist, but the

bital %eglenetrhaqll by |gnor!Pgéhe|HuEQ’st ruletpou?_ll|_n%s anGirection of spontaneous symmetry breaking will determine
considering the large on-site Coulomb interaction. High symy properties of the ground state.

metry in thi.s spin-orbi'gal model means stron_g correlations In general, for the spin-1/2 system with double orbital
between spins and orbitals. In an @Jsymmetric state, the degeneracy, there are four local states on each siteord-
correlation functions for fifteen generators of the (8ULie ing to the ;ai envalues off and 7 |1)=|+1/2,+ 1/2)
grggpl a(;e isotropi?. fThed spin, orbitati, and co(;:pled spin- 2§>]:|_1/2 +?/2> 13y= |+ 172 _1/2|>. |4>:|_1/2,_ 1/2>,
orbital degrees of freedom must be treated on equ : ' Lo A
footing®8 Over the last few years this model was studied our Schwinger bTosons can be |.ntroduced to describe these
four statesju)=a,|0), where|0) is the vacuum states and

extensively. In one dimensioflD), it is fairly understood o
analytically and numericallyz** The one-dimensional model #,° 1,234. There has to be a local constraint imposed,

can be solved by means of the Bethe ansatz, and its grour%ﬁlaruam:l onleach Iattlcel site. The permutation opera-
state is described by a gapless spin liquid, similar to thdo" Pij=(25-S+3)(2T;-T;+3) is to exchange the two
SU(2) Heisenberg model. In 2D, it is relatively less under-States on the sitesandj, Pjjlix,jv)=liv,ju). Moreover,
stood. Liet al? first argued that an SW) singlet plaquette  Pij can be expressed in terms of the four hard-core bosons as
state contains at least four sites, and a collection of sucRij==,.,a1,8,a],a,. An SUA4) singlet is defined by
SU(4) singlets may lead to a spin liquid state. This picture isSUs(i.j.k.)=2, , sl w5  al,alal a0y,  where
realized very well in the two-leg ladder modéland some T, , , sis an antisymmetric tensor. When the model Hamil-
solvable modeld® So far it is not clear whether such an idea tonian Eq.(1) has only four lattice sites, an $4) singlet is
can be realized in 2D. Except numerical diagonalization oralways the lowest-energy state fdg=0. According to the
small cluster® and series expansidfithere have been no group theory, the S{4) symmetric state for a lattice withré
solid results as whether the ground state is long-range osites ( is integej can be regarded as a linear combination of
dered or a spin-orbital liquid. all states consisting af SU(4) singlets™ This is a generali-

In this paper, the properties of the generalized valenceation of Anderson’s resonating valence boiuB) staté®
bond state consisting of the $4) singlets are discussed in from the spin SWR2) system to the SU4) system. As is well
detail for the mode[Eq(1)] in a SU4) Schwinger boson known in the Heisenberg model, a short-range VB state may

0163-1829/2002/6@21)/2145165)/$20.00 66 214516-1 ©2002 The American Physical Society



SHUN-QING SHEN PHYSICAL REVIEW B66, 214516 (2002

describe a spin liquid state with a finite energy g&pnd a  and (ii) reflect these properties. In each @ singlet
long-range VB state may possess antiferromagnetic ERO. plaquette it consists of two configurations. Each configura-
A Schwinger boson mean-field theory based on the shortion consists of two spin singets and two orbital singlets. The
range VB state was proposed for the spin(3systems by two configurations are degenerate, but not orthogonal. The
Auerbach and Arova$, which successfully describes either double degeneracy of the solutions may be related to the
ordered or disordered quantum states. Very recently, thproperties of SIJ4) singlet plaquettes. So these relations will
theory was applied to the spin-orbital systems by the preseritelp us to construct the wave function of the generalized

author and his collaboratér. SU(4) VB state. We first focus on solutiofh), and will dis-
To realize the generalized VB state in the (8Uspin-  cuss the results of solutiofii). The single-particle Green
orbital system, the model Hamiltonian is rewritten as function is given by

1 GKiw)=[iw.Q;—\+ioc,®B(k)]}
H:_Zlbz JﬁAiT,iJré;,u,VAi,iJrﬁ;p.,y ( wn) [ @nié1 7y ( )]
3O L,V

4
+2i )\l( Zj_ a;r'#ai,#—l

Hwp QN+ y1(K)Qat+ 1K) Q3+ y15(K) )y
1 - Y 2
NS @ (ton) "= el

4

where Q1=0,80¢® 0y, Q=0,®0®0,, Q3=0,Q0,
L0, andQ,=o,®o,®a,. There is only one fourfold de-
generate quaS|part|cIe spectrum,

whereA, ., ,=a;,a;,—a;,3;, andN, is the total number
of lattice sites. Antisymmetric operato#s ;., , are intro-
duced for the purpose of the mean- -field calculations. Th
following theory is limited to the casés;=0. The local La-
grangian multiplier is also used to impose the local constraint
for the hard-core bosons on average. In the mean-field ap- 0(K) = N2 =[73AK) + Yi(K) + ¥i4(K) ], 5
proximation we will take all\;=X. The thermodynamic av-
erages of the operatow;; ,, are defined as the VB order
parametergA; i s5.,.,)=—2iA, ,(6), which are odd func- 4
tions with respect to either the indicgs, v or the vector F=— > Inl1—exd — Bo(k)]|+2> o(k)+&. (6)
direction 8. In the momentum space, we define B K k

from which the free energy for the system is evaluated,

The saddle-point equations are thus derived by minimizing

Y lK) =212 J5A, (Sexplik- d). the free energy with respect to the mean-field variablasd
0 A,,(6). We can deduce the VB order parameters according
We define an eight-component spinor to the symmetry ofA ,,(6) and of the lattice.
. ity Now we apply the general formalism to the @WUmodel
Dy =(ayy ,8x2,8x3:8k4,8—k1,8-k2,8-Kk3,8—Ka)- on several lattices. We first study the two-leg ladder model.

Recent numerical study has shown that its ground state is a
spin-orbital liquid with a finite energy ga,which can be
regarded as a realization of the @Y plaquette state, or a

By utilizing the Pauli matricesr, (a«=Xx,y,z), the decou-
pled mean-field Hamiltonian is thus written in a compact

matrix form, ; . . .
short-range generalized VB state. Here the isotropic case is
1 ‘ . considered to bg =J, =J so that we introduce two sets of
=3 ; O [N —ioy@B(k) [P+ &, (8) VB order parametersA ,,(x) along the ladder and ,,(y)
along the rungs. Special attention should be paid for the di-
whereEolNA=2§J5Afw(5)—3>\+%Eb\](s; rection along the rung. The momentum along the rung has
two discrete values. The spectra are given by
0 y12(K) Y13(K) ¥14(K)
vl 0 v yak) ©. (k)= V\* = 160°A(sink = 1), Y
B(k)= ,
—y13(k) = y23(k) 0 v34(K) where  Af=A%(x)+A%y(x) +AL,(x), and ”
—y1u(K) = youk) —y34(K) 0 —A,“,(y)IZAW(x) is determined by the mean field

here N« is th b £ lati i Considering th equations The two branches of the spectra have a relation:
where N, IS the number of lattice sites. L.onsidering the w,.(K)=w_(—Kk). The saddle-point equations are deter-

symmetry in the Hamiltoniaf¥, there exist two sets of solu- mined by minimizing the free energy with respect to the
tions: (i) y1aK)=17vaak), v13(K)=—7y24(k), y14(K) mean-field variables

=7v23(K); (i) y1K)= = y34(K), v13(K) = v24(K), v14(K)

= —v,5(k). The physical reason is that an &W singlet dk

plaquette state Sifi,j,k,I) contains four creation operators —[2ng(w,(k))+ 1]— (8a)
with different sites and indices, anleJ v contains only two 27 w.(K)

sites and two indices. To form such an @Y singlet . 5 5
plaquette state, the four creation operators on different sites f % (sink+7) 2na(w. (K)+1]= 1+27 (8b)
should have different indices. The relations in solutidns 27 w,(k) [2ng(w- (k) 1= 2)
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dk sink+ 7% 7 by may be used as the order parameters for long-range cor-
f pye m[Zns(w+(k))+ =73, (8c)  relations for the spin, orbital, and coupled spin-orbital den-
sities. The saddle-point equations are solved numerically.
where ng(x) is the distribution function for bosonsig(x) When T>0, by=0. At T=0, we have A\=8JA
=1[exp(@)—1] and B=1kgT. At T=0, ng(w,(k))=0  =3.05909 andb,=0.1068. The nonzerb, indicates that
whenw, (k)#0. The numerical calculations give rise Xo  the BEC occurs on a square lattice.
=2.26574, Aj=0.35339, andy=0.55146. The minima Another typical two-dimensional lattice is the triangle lat-
of the spectra is ak*=x/2 for w, (k) and at—x/2 for  tice. For example, NiLi@ has a 2D triangle lattice structure,
w_(K): min(w- (k)= yA?—16J%Af(1+ )% From the dy- and was modeled as a spin-orbital syst&hUsually the
namic susceptibilities of spin, orbital, and spin-orbital opera-quantum frustration is anticipated to make quantum fluctua-
tors, we find that there is a finite energy gapy,, tions more stronger. Topologically, we can distort a triangle
=2 min(w. (k))=1.138. For the second set of solutions lattice into a square one by introducing a finite diagonal cou-
(ii), it also produces the same numerical results, degeneratéding J,,, and take another diagonal couplidg ,=0. In
with the first set of solutions. van den Bossahtel* stud- the present theory we have three sets of order parameters:
ied this SU4) ladder model up to 16 sites by an exact diago-4 ,,(X), A,,(y), andA ,,(x+Yy). We focus on the isotropic
nalization method, and a finite energy gap has been found ipaseJ,=Jy=J,.; then the VB order parameters have a
a singlet-multiplet excitationA =1.09]. The two values are relation A ,,(x)=A4,,(y)=A4,,(x+y)=4,,. The spectra
in excellent agreement. A local minimum lat 7/2 in the  for the bosonic quasiparticles is thus given by
guasiparticle dispersion was also observed. Moreover, the
ground state has also been found to have a twofold degen- w(k)=\?—16J*A?[sink,+ sink,+sin(k,+k,)]?,
eracy in the thermodynamic limit, consistent with the two
solutions of ours. All these facts can be regarded as strong
. . H 2_ A2 2 2 e
support for our present theory. It is worth noting that theWith A“=Af1,+ A5+ A7,. The minimum of the spectra oc-
theory may fail for a one-dimensional chain to predict acurs atk* == (=/3,7/3), which can be shifted away if the
small energy gap due to the ignorance of the topologicafouplings are anisotropic. A similar set of saddle-point equa-
terms or “Pontryagin index,” which can destroy Haldane’s tions are obtained by minimizing the free energy in E).
gap. The same problem was encountered in th€stdeory, ~ Numerically solving the self-consistent equation Tt 0
and was discussed extensively in one-dimensional spin-1/gives rise to\=6y3JA=3.57878 and by=0.155345.
systemg?! Since w(k*)=0, the BEC also appears on an isotropic tri-
Next we come to study two-dimensional lattices. Let usangle lattice. The coupling,, , does not enhance the quan-
consider a square lattice first. In this case, we still assum&im frustration to suppress the BEC completely. The role of
isotropic couplingsJ,=J,. The spectrum for the bosonic Jy.y is to force the minimal point fromt (7/2,m/2) for

quasiparticles can be writtenZs Jy4y=0 to =(m/3,m/3) for Iy, y=J=J,. A more detailed
. _ calculation shows that the wave vectdr changes continu-
(k)= J\?—16J°A%(sink,+ sink,)?, (9 ously as a function o8, /Jy.

In the usual Schwinger boson mean-field theory the BEC
is identified as the long-range correlations between th@5U
spins. To establish the relation between the BEC and the
long-range order in the present W ground state, we cal-
culated the static susceptibilit@s

with A?2=A2,+ A2+ A%,. The minimum of the energy spec-
tra occurs ak* = (7/2,7/2). The saddle-point equations are
given by

S > XTr{QxG(k+q,7=0"
XX(Q)—_W - XTr{QxG(k+q,7=0")

dk  (sink,+sink,)? z
J 2wy emeleto)r =g, X 0xG(k,7=0")}, (12

(10D \yherex=Ssfor spinS’, X=T for orbital T{, andX= ST for
where the coordinate number for square lattice#s4. In  the coupled spin-orbital T . These three operators can be
the present theory the number of bosons in the diagonalizegixpressed in terms of spinor®,Q,®,/4, whereQgs= o,
Hamiltonian is not equal to the number of the hard-coreg gy®o,, Or=0® 0,0 7o, aNdQg1=0o® 7, 0,. From
bosons since the Bogoliubov transformation changes theéhe single-particle Green function E@), we can calculate
number of bosons. The quasiparticle number is determineghe static susceptibilities
by solutions of the saddle-point equations self-consistently.

At T=0 the bosons may condense, i.e., the BEC occurs. The xs(Q)INy~1b2y24q=2k*), (139
minima of the boson spectia(k) are atk=*+k*. Since the

distribution function becomes singular a{k*)=0 in Eq. 1222 (e oLk

(10a, we have to introduce a finite quantityg x1(Q)/Ny~zbgy1(q=2k"), (13b)
= 2 ng(w(k*))+ng(w(—k*) /[N, w(k*)] such that the

saddle-point equations have physical solutions. The nonzero xs1(Q)INy~505y54q=2k*), (130
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which become singular wheg=Q=2k* and higher-order
terms can be ignored. The correlation functions are propo
tional to the number of lattice sites onbg+ 0. These prop-

PHYSICAL REVIEW B66, 214516 (2002

and orbital density operators have long-range correlations,
rand the coupled spin-orbital density operators also have
long-range correlations with the same wave vectors. An in-

erties are characterized by long-range correlations at théeresting observation is that the ground-state energy depends

wave vectorQ. In the thermodynamic limit, the correspond-
ing magnetizations becommy=+/xx(Q)/N,, which de-
pend on the values of VB order parametars,, Ais, and
Ail, respectively. The long-range order is thus @t
=(r,m) for a square lattic¢(7,7) and (—,— ) are the
same vectdr andQ= (27/3,27/3) or (—2/3,—2/3) for
a triangle lattice. The two vectors k* correspond to one

only on the parametek?.?” It may contain some new states,
which is determined by the direction of spontaneous symme-
try breaking?® Actually, we have the freedom to choose the
direction of the spontaneous symmetry breaking in the ther-
modynamic limit. For example, an infinitesimal external
staggered magnetic field along the spgidirection may in-
duce a ground state with?,=A? andA%,=A%,=0, where
only a magnetic long-range order appears. An infinitesimal

state for a square lattice, but two equivalent states for a triggnn-Teller distortion may induce a ground state vmﬁ

angle lattice. From the second set of mean field solutions, we. y2 44 A
find that the above relations remain if we make a permuta

tion betweerS andT. Therefore these two solutiorig and
(i) are degenerate. We believe that the double degeneracy

the ground states observed in our theory is not a result of th

mean-field theory, and may have a deep physical origin. Th

singularity in static susceptibilities also reflects the fact thatt
the collective modes are gapless Goldstone modes. Tr’|
SU(4) system may have at most three Goldstone mode wheﬁ1

the symmetry is broken spontaneously.
When A,=A%2,=A2,=A%3, we have ys=x1=xsT-

2=A%,=0, where an orbital long-range order

shows up. It is also possible for two or more types of long-
re%nge orders to coexist in a single ground state.

%"|n conclusion, based on a generalized valence bond state
icture, a Schwinger boson mean-field theory is developed
or the symmetric SW) spin-orbital systems, showing that
he ground state for a two-leg ladder model is a spin-orbital
ﬁquid with a finite energy gap in low-energy excitations, and

e ground states for square and triangle lattices possess spin,
orbital, and coupled spin-orbital long-range orderings.

These relations are in agreement with the isotropic correla- | would like to thank G. M. Zhang for his helpful discus-
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