102 research outputs found

    A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154

    Get PDF
    The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB and the Survey for Transient Astronomical Radio Emission 2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here, we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts ≤1 s) we derive 50% (90%) upper limits of 1048 (1049) erg for GWs at 300 Hz and 1049 (1050) erg at 2 kHz, and constrain the GW-to-radio energy ratio to ≤1014−1016. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs

    Search for continuous gravitational waves from known pulsars in the first part of the fourth LIGO-Virgo-KAGRA observing run

    Get PDF
    Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of general relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO–Virgo–KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering single-harmonic and dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is 6.4 × 10−27 for the young energetic pulsar J0537−6910, while the lowest constraint on the ellipticity is 8.8 × 10−9 for the bright nearby millisecond pulsar J0437−4715. Additionally, for a subset of 16 targets, we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of nonstandard polarizations as predicted by the Brans–Dicke theory

    Swift-BAT GUANO follow-up of gravitational-wave triggers in the Third LIGO–Virgo–KAGRA Observing Run

    Get PDF
    We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO–Virgo–KAGRA network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received with low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wave Transient Catalogs (GWTC-3). Targeted searches were carried out on the entire GW sample using the maximum-likelihood Non-imaging Transient Reconstruction and Temporal Search pipeline on the BAT data made available via the GUANO infrastructure. We do not detect any significant electromagnetic emission that is temporally and spatially coincident with any of the GW candidates. We report flux upper limits in the 15–350 keV band as a function of sky position for all the catalog candidates. For GW candidates where the Swift-BAT false alarm rate is less than 10−3 Hz, we compute the GW–BAT joint false alarm rate. Finally, the derived Swift-BAT upper limits are used to infer constraints on the putative electromagnetic emission associated with binary black hole mergers

    The Petrochemistry of Jake_M: A Martian Mugearite

    Full text link
    “Jake_M,” the first rock analyzed by the Alpha Particle X-ray Spectrometer instrument on the Curiosity rover, differs substantially in chemical composition from other known martian igneous rocks: It is alkaline (&gt;15% normative nepheline) and relatively fractionated. Jake_M is compositionally similar to terrestrial mugearites, a rock type typically found at ocean islands and continental rifts. By analogy with these comparable terrestrial rocks, Jake_M could have been produced by extensive fractional crystallization of a primary alkaline or transitional magma at elevated pressure, with or without elevated water contents. The discovery of Jake_M suggests that alkaline magmas may be more abundant on Mars than on Earth and that Curiosity could encounter even more fractionated alkaline rocks (for example, phonolites and trachytes).</jats:p

    Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar

    Get PDF
    The physical mechanisms responsible for pulsar timing glitches are thought to excite quasinormal mode oscillations in their parent neutron star that couple to gravitational-wave emission. In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two colocated Hanford gravitational-wave detectors of the Laser Interferometer Gravitational-wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational-wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational-wave detection candidate was found. We place Bayesian 90% confidence upper limits of 6.3×10-21 to 1.4×10-20 on the peak intrinsic strain amplitude of gravitational-wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0×1044 to 1.3×1045 erg

    LIGO S6 detector characterization studies

    No full text

    Safety Design Strategy for the Resumption of Trans

    No full text

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    No full text

    Multi-ancestry GWAS deciphers genetic architecture of abdominal aortic aneurysm and highlights<i>PCSK9</i>as a therapeutic target

    Full text link
    SummaryAbdominal aortic aneurysm (AAA) is a common disease with significant heritability. In this study, we performed a genome-wide association meta-analysis from 14 discovery cohorts and uncovered 144 independent associations, including 97 previously unreported loci. A polygenic risk score derived from meta-analysis was able to explain AAA beyond clinical risk factors. Genes at AAA risk loci indicate involvement of lipid metabolism, vascular development and remodeling, extracellular matrix dysregulation and inflammation as key mechanisms in the pathogenesis of AAA. We further integrated functional data to elucidate expression of genes associated with AAA. These genes also indicate crossover between the development of AAA and other monogenic aortopathies, particularly via TGF-β signaling pathways. Motivated by the strong evidence for the role of lipid levels in AAA by PheWAS, we identified therapeutic opportunities using Mendelian Randomization and, in pre-clinical studies, we demonstrated thatPCSK9inhibition in mice prevented the development of AAA.</jats:p

    Prioritizing Measures That Matter Within a Person-Centered Oncology Learning Health System

    No full text
    Abstract Background Despite progress in developing learning health systems (LHS) and associated metrics of success, a gap remains in identifying measures to guide the implementation and assessment of the impact of an oncology LHS. Our aim was to identify a balanced set of measures to guide a person-centered oncology LHS. Methods A modified Delphi process and clinical value compass framework were used to prioritize measures for tracking LHS performance. A multidisciplinary group of 77 stakeholders, including people with cancer and family members, participated in 3 rounds of online voting followed by 50-minute discussions. Participants rated metrics on perceived importance to the LHS and discussed priorities. Results Voting was completed by 94% of participants and prioritized 22 measures within 8 domains. Patient and caregiver factors included clinical health (Eastern Cooperative Oncology Group Performance Status, survival by cancer type and stage), functional health and quality of life (Patient Reported Outcomes Measurement Information System [PROMIS] Global-10, Distress Thermometer, Modified Caregiver Strain Index), experience of care (advance care planning, collaboRATE, PROMIS Self-Efficacy Scale, access to care, experience of care, end-of-life quality measures), and cost and resource use (avoidance and delay in accessing care and medications, financial hardship, total cost of care). Contextual factors included team well-being (Well-being Index; voluntary staff turnover); learning culture (Improvement Readiness, compliance with Commission on Cancer quality of care measures); scholarly engagement and productivity (institutional commitment and support for research, academic productivity index); and diversity, equity, inclusion, and belonging (screening and follow-up for social determinants of health, inclusivity of staff and patients). Conclusions The person-centered LHS value compass provides a balanced set of measures that oncology practices can use to monitor and evaluate improvement across multiple domains. </jats:sec
    corecore