15 research outputs found

    A Rapid Electronic Cognitive Assessment Measure for Multiple Sclerosis: Validation of Cognitive Reaction, an Electronic Version of the Symbol Digit Modalities Test (Preprint)

    No full text
    BACKGROUND Incorporating cognitive testing into routine clinical practice is a challenge in multiple sclerosis (MS), given the wide spectrum of both cognitive and physical impairments people can have and the time that testing requires. Shortened paper and verbal assessments predominate but still are not used routinely. Computer-based tests are becoming more widespread; however, changes in how a paper test is implemented can impact what exactly is being assessed in an individual. The Symbol Digit Modalities Test (SDMT) is one validated test that forms part of the cognitive batteries used in MS and has some computer-based versions. We developed a tablet-based SDMT variant that has the potential to be ultimately deployed to patients’ own devices. OBJECTIVE This paper aims to develop, validate, and deploy a computer-based SDMT variant, the Cognition Reaction (CoRe) test, that can reliably replicate the characteristics of the paper-based SDMT. METHODS We carried out analysis using Pearson and intraclass correlations, as well as a Bland-Altman comparison, to examine consistency between the SDMT and CoRe tests and for test-retest reliability. The SDMT and CoRe tests were evaluated for sensitivity to disability levels and age. A novel metric in CoRe was found: question answering velocity could be calculated. This was evaluated in relation to disability levels and age for people with MS and compared with a group of healthy control volunteers. RESULTS SDMT and CoRe test scores were highly correlated and consistent with 1-month retest values. Lower scores were seen in patients with higher age and some effect was seen with increasing disability. There was no learning effect evident. Question answering velocity demonstrated a small increase in speed over the 90-second duration of the test in people with MS and healthy controls. CONCLUSIONS This study validates a computer-based alternative to the SDMT that can be used in clinics and beyond. It enables accurate recording of elements of cognition relevant in MS but offers additional metrics that may offer further value to clinicians and people with MS. </sec

    A Rapid Electronic Cognitive Assessment Measure for Multiple Sclerosis: Validation of Cognitive Reaction, an Electronic Version of the Symbol Digit Modalities Test

    No full text
    Background Incorporating cognitive testing into routine clinical practice is a challenge in multiple sclerosis (MS), given the wide spectrum of both cognitive and physical impairments people can have and the time that testing requires. Shortened paper and verbal assessments predominate but still are not used routinely. Computer-based tests are becoming more widespread; however, changes in how a paper test is implemented can impact what exactly is being assessed in an individual. The Symbol Digit Modalities Test (SDMT) is one validated test that forms part of the cognitive batteries used in MS and has some computer-based versions. We developed a tablet-based SDMT variant that has the potential to be ultimately deployed to patients’ own devices. Objective This paper aims to develop, validate, and deploy a computer-based SDMT variant, the Cognition Reaction (CoRe) test, that can reliably replicate the characteristics of the paper-based SDMT. Methods We carried out analysis using Pearson and intraclass correlations, as well as a Bland-Altman comparison, to examine consistency between the SDMT and CoRe tests and for test-retest reliability. The SDMT and CoRe tests were evaluated for sensitivity to disability levels and age. A novel metric in CoRe was found: question answering velocity could be calculated. This was evaluated in relation to disability levels and age for people with MS and compared with a group of healthy control volunteers. Results SDMT and CoRe test scores were highly correlated and consistent with 1-month retest values. Lower scores were seen in patients with higher age and some effect was seen with increasing disability. There was no learning effect evident. Question answering velocity demonstrated a small increase in speed over the 90-second duration of the test in people with MS and healthy controls. Conclusions This study validates a computer-based alternative to the SDMT that can be used in clinics and beyond. It enables accurate recording of elements of cognition relevant in MS but offers additional metrics that may offer further value to clinicians and people with MS. </jats:sec

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    No full text

    A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer

    No full text
    AbstractMurine tissues harbor signature γδ T cell compartments with profound yet differential impacts on carcinogenesis. Conversely, human tissue-resident γδ cells are less well defined. In the present study, we show that human lung tissues harbor a resident Vδ1 γδ T cell population. Moreover, we demonstrate that Vδ1 T cells with resident memory and effector memory phenotypes were enriched in lung tumors compared with nontumor lung tissues. Intratumoral Vδ1 T cells possessed stem-like features and were skewed toward cytolysis and helper T cell type 1 function, akin to intratumoral natural killer and CD8+ T cells considered beneficial to the patient. Indeed, ongoing remission post-surgery was significantly associated with the numbers of CD45RA−CD27− effector memory Vδ1 T cells in tumors and, most strikingly, with the numbers of CD103+ tissue-resident Vδ1 T cells in nonmalignant lung tissues. Our findings offer basic insights into human body surface immunology that collectively support integrating Vδ1 T cell biology into immunotherapeutic strategies for nonsmall cell lung cancer.</jats:p

    Antibody decay, T cell immunity and breakthrough infections following two SARS-CoV-2 vaccine doses in inflammatory bowel disease patients treated with infliximab and vedolizumab

    No full text
    AbstractAnti tumour necrosis factor (anti-TNF) drugs increase the risk of serious respiratory infection and impair protective immunity following pneumococcal and influenza vaccination. Here we report SARS-CoV-2 vaccine-induced immune responses and breakthrough infections in patients with inflammatory bowel disease, who are treated either with the anti-TNF antibody, infliximab, or with vedolizumab targeting a gut-specific anti-integrin that does not impair systemic immunity. Geometric mean [SD] anti-S RBD antibody concentrations are lower and half-lives shorter in patients treated with infliximab than vedolizumab, following two doses of BNT162b2 (566.7 U/mL [6.2] vs 4555.3 U/mL [5.4], p &lt;0.0001; 26.8 days [95% CI 26.2 – 27.5] vs 47.6 days [45.5 – 49.8], p &lt;0.0001); similar results are also observed with ChAdOx1 nCoV-19 vaccination (184.7 U/mL [5.0] vs 784.0 U/mL [3.5], p &lt;0.0001; 35.9 days [34.9 – 36.8] vs 58.0 days [55.0 – 61.3], p value &lt; 0.0001). One fifth of patients fail to mount a T cell response in both treatment groups. Breakthrough SARS-CoV-2 infections are more frequent (5.8% (201/3441) vs 3.9% (66/1682), p = 0.0039) in patients treated with infliximab than vedolizumab, and the risk of breakthrough SARS-CoV-2 infection is predicted by peak anti-S RBD antibody concentration after two vaccine doses. Irrespective of the treatments, higher, more sustained antibody levels are observed in patients with a history of SARS-CoV-2 infection prior to vaccination. Our results thus suggest that adapted vaccination schedules may be required to induce immunity in at-risk, anti-TNF-treated patients.</jats:p

    Predominantly Persistent Intraretinal Fluid in the Comparison of Age-related Macular Degeneration Treatments Trials

    Full text link

    Advanced LIGO

    Get PDF
    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry–Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015
    corecore