37 research outputs found

    SIFAT MEKANIK BIONANOKOMPOSIT FILLER NANOPARTIKEL BIOMASS KULIT ROTAN METODE INJEKSI MOLDING

    Get PDF
    Rattan  biomass  is  one  of  the  agricultural  waste  that  can  be  used  as  a  source  of cellulose  nanoparticle.  To  produce  cellulose  nanoparticle  bark  rattan  that  is  low density,  good  mechanical  properties,  natural  resources  and  renewable  resources needed a new method of development nanotechnology using hummer mill methods. The  purpose  of  this  study  is  synthesis  and  mechanical  properties  of bionanocomposite  reinforce  cellulose  nanoparticle  bark  rattan  used  injection moulding.  Cellulose  nanoparticle  is  made  with  mechanical  systems  (milling  and shakers) in size 75 μm and hummer mill t =30 minute. PSA test results produced a maximum particle size of 25.6 nm (number distribution commulant method) at the t   =30 minute. Meanwhile, the hardness and impact strength of bionanocomposite show 79.9 HRR and 67.7 J/m

    Analisa Sifat Mekanik pada Bahan Anti Peluru dari Adisi Berpenguat Serat Panjang Tandan Kosong Kelapa Sawit (TKKS)

    Get PDF
    Kelapa sawit merupakan salah satu hasil perkebunan di Indonesia yang perkembangannya meningkat setiap tahun. TKKS merupakan limbah dari pabrik sawit yang pemanfaatannya belum optimal sehingga akan menjadi limbah padat. Penggunaan serat TKKS pada biokomposit adalah upaya reduksi dan pemanfaatan limbah TKKS yang melimpah. Tujuan dari penelitian ini adalah untuk mendapatkan biokomposit dengan adisi serat panjang TKKS ter-modifikasi untuk aplikasi bahan anti peluru dan mengetahui sifat mekanisnya. Sifat mekanik pada biokomposit yang diperoleh pada penelitian ini memiliki sifat mekanik yang baik untuk aplikasi bahan anti peluru, dimana biokomposit tersebut lentur dan mampu meredam gaya dan energi yang diberikan oleh peluru. Sampel terbaik berada pada biokomposit yang mengandung konsentrasi serat sebesar 18% dengan polimer epox

    ANALISIS STRUKTUR SELULOSA KULIT ROTAN SEBAGAI FILLER BIONANO KOMPOSIT DENGAN DIFRAKSI SINAR-X

    Get PDF
    ANALISIS STRUKTUR SELULOSA KULIT ROTAN SEBAGAI FILLER BIONANO KOMPOSIT DENGAN DIFRAKSI SINAR-X. Kulit rotan merupakan salah satu limbah pertanian yang dapat dimanfaatkan sebagai sumber serat untuk bionano komposit. Untuk menghasilkan bionanokomposit berbasis nanopartikel selulosa kulit rotan yang ringan, kuat, ulet, ramah lingkungan dan eksplorasi sumber daya alam dalam negeri diperlukan pengembangan metode baru sebagai solusi teknik yang mengedepankan kemampuan sistem yaitu nanoteknologi. Tujuan penelitian ini adalah analisis struktur kristal menggunakan X-Ray Diffraction (XRD) dan ukuran partikel dengan Particle Size Analyzer (PSA) nanopartikel selulosa kulit rotan (SKR) hasil ultrasonikasi yang akan digunakan sebagai filler pada bionanokomposit menggunakan injection moulding. SKR dibuat dengan sistem mekanik (pen disk milling dan elektromagnetik shaker) dalam ukuran 75 μm, dipanaskan 100 oC dan stirer 200 rpm selama 2 jam, dilanjutkan ultrasonikasi pada 20 kHz, dengan variasi waktu 1 jam, 2 jamdan 3 jam. Hasil pengujian PSA menunjukkan ukuran partikel diameter 146,3 nm(number distribution 32%) untuk waktu ultrasonikasi 3 jam. Sementara itu analisis struktur kristal menunjukkan bahwa SKR berstruktur kristal monoklinik berfasa -selulosa. Apparent Crystal Size (ACS) dan micro strain (η) nanopartikel SKR adalah ACS = 151,95 dan η = 0,0001. Pemberian nanopartikel SKR pada matriks polipropilen (PP) menggunakan injection mouding menghasilkan sifat mekanik (impact dan hardness) bionanokomposit lebih baik dari pembandingnya yaitu komposit sintetik berfiber glass

    PENGARUH ATMOSFER DAN SUHU SINTERING TERHADAP KOMPOSISI PELET HIDROKSIAPATITYANG DIBUAT DARI SINTESAKIMIA DENGAN MEDIAAIR DAN SYNTETHIC BODY FLUID (SBF)

    Get PDF
    PENGARUH ATMOSFER DAN SUHU SINTERING TERHADAP KOMPOSISI PELET HIDROKSIAPATITYANG DIBUAT DARI SINTESAKIMIA DENGAN MEDIAAIR DAN SYNTETHIC BODY FLUID (SBF). Penggunaan hidroksiapatit(HAp) sebagai bahan implantasi tulang sintetis telah banyak digunakan. Salah satu penerapannya adalah sebagai bahan pelapis logam yang akan diimplantasikan ke dalam tubuh sebagai pengganti tulang. Masalah yang timbul pada saat pelapisan adalah pada suhu yang tinggi, HAp dapat terdekomposisi menjadi β-TCP, α-TCP, CaO ataupun senyawa lain yang tidak diinginkan. Pada penelitian ini digunakan variasi jenis pelarut pada saat pembuatan HAp yakni pelarut air dan pelarut SBF (Syntethic Body Fluid). Pelarut SBF menyumbangkan gugus karbonat dan ion-ion lain pada HAp yang menyebabkannya stabil. Sintering dilakukan untuk mendapatkan HAp dengan densitas tinggi yang stabil. Variasi suhu sintering yang digunakan adalah 900 oC, 1000 oC, 1100 oC dan 1150 oC. Variasi atmosfer yang digunakan adalah gas Ar dan gas CO2. Dari hasil karakterisasi dengan XRD (X-Ray Diffraction) diperoleh hasil bahwa secara umum HAp yang disinter dengan gas Ar maupun CO2 tidak mengalami dekomposisi sampai suhu 1150 oC. Pengamatan terhadap foto SEM (Scanning Electron Microscope) HAp menunjukkan perbedaan bentuk morfologi HAp dengan pelarut air memiliki bentuk butir yang bulat dan berdempetan satu sama lain sedangkan morfologi HAp dengan pelarut SBF menunjukkan bentuk seperti jaring yang lebar. Pengukuran volume dan massa tiap sampel menunjukkan perubahan densitas, yakni semakin tinggi suhu sinter maka densitas pelet HAp semakin besar

    Pengembangan Teknologi Proses Produksi Bionanokomposit Filler Biomassa Rotan

    Get PDF
    Rattan biomass is a fiber waste from processing industry of rattan. Its abundant availability, as well as does not threaten the balance of food and feed, make it a potential source as raw material for composite filler of cellulose nanoparticles. To obtain a high cellulose content, it was inoculated with White rote fungi and Aspergillus niger. The experiments were conducted at inoculation time of 15, 21, and 30 days. The results showed that biomass of rattan extracted with White rote fungi and Aspergillus niger reached maximum cellulose content at the inoculation time of 21 days ie 76.47% cellulose, lignin 2.39%, and 20% moisture content. Cellulose has a monoclinic crystal structure, a =7.87; b=10.31; c=10.13 α= γ = 90, β=120. Nanoparticles were produced by disk mill-hummer mill method with variation milling time of  15, 30, and 45 minutes. Collision, friction, and heat for 30 minutes of milling could produce energy that was transferred to the particles and caused cavitation which resulted particles of 16.22-51.30 nm particle size. Production of test piece and prototype of nanocomposite using TSE and injection molding produced material which has 2 phases of crystal structure, namely monoclinic, and orthorhombic phases. The mechanical properties of impact strength was 67.769 J/m and hardness of 79.97 HRR. Thermal properties and density of bionanokomposit showed comparable values with synthetic composites

    Pengembangan Teknologi Proses Produksi Bionanokomposit Filler Biomassa Rotan

    Get PDF
    Rattan biomass is a fiber waste from processing industry of rattan. Its abundant availability, as well as does not threaten the balance of food and feed, make it a potential source as raw material for composite filler of cellulose nanoparticles. To obtain a high cellulose content, it was inoculated with White rote fungi and Aspergillus niger. The experiments were conducted at inoculation time of 15, 21, and 30 days. The results showed that biomass of rattan extracted with White rote fungi and Aspergillus niger reached maximum cellulose content at the inoculation time of 21 days ie 76.47% cellulose, lignin 2.39%, and 20% moisture content. Cellulose has a monoclinic crystal structure, a =7.87; b=10.31; c=10.13 α= γ = 90, β=120. Nanoparticles were produced by disk mill-hummer mill method with variation milling time of  15, 30, and 45 minutes. Collision, friction, and heat for 30 minutes of milling could produce energy that was transferred to the particles and caused cavitation which resulted particles of 16.22-51.30 nm particle size. Production of test piece and prototype of nanocomposite using TSE and injection molding produced material which has 2 phases of crystal structure, namely monoclinic, and orthorhombic phases. The mechanical properties of impact strength was 67.769 J/m and hardness of 79.97 HRR. Thermal properties and density of bionanokomposit showed comparable values with synthetic composites

    The effect of sulfur ratio to 2-2'-dithiobenzothiazole accelerator on viscoelastic, vibration damping, and thermal stability properties of gum natural rubber vulcanizates

    Get PDF
    It is well-recognized that the sulfur to accelerator (S/A) ratio greatly influences the nature of rubber vulcanizates. Viscoelasticity, vibration damping, and thermal stability are important properties of rubber vulcanizates used in vibration isolators. This study aimed to assess the effects of sulfur to 2-2’-dithiobenzothiazole (MBTS) accelerator ratio on viscoelastic, vibration damping, and thermal stability of gum natural rubber (NR) vulcanizates. The viscoelastic and vibration damping properties were determined by using a rubber process analyzer (RPA), while the thermal stability was investigated by thermogravimetric analysis (TGA). The results showed that the gum NR vulcanizates prepared with a sulphur to MBTS accelerator ratio at 1.11 had the best viscoelastic and vibration damping properties for use as a rubber isolator. However, regarding thermal stability, the gum NR vulcanizates prepared with sulfur to MBTS accelerator ratio at 2.15 were superior to the others

    Kajian Penggunaan Carbon Black N990 sebagai Bahan Pengisi Kompon Karet Alam: Sifat Dinamik, Kestabilan Termal, dan Ketahanan Panas

    Get PDF
    The manufacture of vibration damping material from natural rubber (NR) required an increase in dynamic properties, thermal stability, and resistance to heat. Using the Carbon Black N990 as a filler in NR vulcanizates can potentially increase on these properties. This research aims to study the effect of using Carbon Black N990 on dynamic properties, thermal stability, and aging resistance to heat in NR vulcanizates. The dynamic properties of NR vulcanizates were determined by Rubber Process Analyzer (RPA), while the thermal stability properties were studied by TGA, and heat resistance was determined by the thermal aging test. The RPA test results showed that adding 50 phr Carbon Black N990 in the NR compound could increase the value of the complex shear modulus to 65%. Furthermore, the results of the TGA test showed that the thermal stability properties of unfilled NR vulcanizates were better than that of NR vulcanizates containing Carbon Black N990. Unfilled NR vulcanizates were heat stable up to 353oC, while NR vulcanizates containing 15, 30, and 50 parts per hundred rubber (phr) Carbon Black N990, respectively, were heat stable up to 348.1oC, 348oC, and 349oC. Based on the requirements of ISO 4632-1, it showed that the NR compound containing Carbon Black N990 has good heat resistance properties. The NR compound formula contains 30 phr Carbon Black N990 showing good dynamic properties and heat resistance in accordance with EN 15129 requirements so that it has the potential to be used as a vibration damping material for earthquake-resistant structures

    Analysis of Structure Cellulose Rattan Biomassas Bionanocomposite Filler by Using X-ray Diffraction

    Full text link
    Rattan biomass is one of the agricultural waste that can be used as a source of fiber for bionanocomposites. To produce bionanocomposite reinforcement for nanocellulose rattan biomass that is low density, good mechanical properties, natural resources and renewable resources needs a new method of development nanotechnology. The purpose of this study is the characterization of X-Ray Diffraction (XRD) and Particle Size analyzer (PSA) cellulose nanorattan biomass were used for reinforcement of polypropylene matrix using injection molding. Cellulose is made of rattan biomass with mechanical systems (pen disk milling and shakers) in size 75 μm was heated at 100 °C and stirred at 300 rpm for 2 hours, then ultrasonicated at f = 20 kHz, with time variation of 1, 2 and 3 hours. PSA test results particle size of 146.3 nm (number distribution 32%) at t = 3 hours. Meanwhile, the Apparent Crystal Size (ACS) and micro strain (η) using XRD showed cellulose nanoparticles rattan biomass has crystal structure with ACS = 151.95 and η = 0.0001. Nanoparticle cellulose were used as reinforcement of polypropylene (PP) matrix which show better mechanical properties (impact and hardness) than its counterpart i.e. fiber glass reinforced composite

    KARAKTERISASI SELULOSA KULIT ROTAN SEBAGAI MATERIAL PENGGANTI FIBER GLASS PADA KOMPOSIT

    Get PDF
    Abundant of natural resources in Indonesia give advent to the development of Biocomposite technology. Furthermore, agricultural wastes as one typical sources of bio-composite are available everywhere in Indonesia. Rotan-bark is one kind of agriculture waste that can be use as main input for bio-composite. This research deals with characterisation of cellulose content from rotan-bark as substitute for fibber glass as filler in composite. Cellulose from Rotan-bark made in long and short fibbers by means of fermentation. In this case, aspergillus niger is used as fermentation agent. Rotan type, Rotan mass, and temperature are maintained constant during the treatment. Variable of fermentation time ( tF ) and fungi-volume ( Vf) are varied. Fermentationtime range from: 4,5,6,8 to 10 days. Extraction of rotan-bark-cellulose by means of fermentation developed specific enzyme. This enzyme can break-down the filament of non-cellulose plant. Then this enzyme can separated fibber component from: parenchyma, xylem and epidermis at weight density = 0,58 and optimal efficiency up to 60,8% at tF = 8 days ; Vf = 15 ml. X-Furthermore, XRay Diffraction (XRD) shows the crystallized structure obtained from rotan-bark cellulose at Apparent Crystal Size (ACS) = 29130,42 nm and η (inhomogeneous mechanical micro strain) = 0,94 x 10-3 . Characterization by means of SEM-EDS shows rotan-bark cellulose composed from : C = 47,5 % massa, O = 46 % massa and mineral. The result is close to recommended fibber glass composition for industrial application. Keywords : fibber glass, extraction, celulosa, bio-composite, aspergilus nige
    corecore