2,156 research outputs found

    Quench characteristics of a stabilizer-free 2G HTS conductor

    No full text
    The prospect of medium/high field superconducting magnets using second generation (2G) HTS tapes is approaching reality with continued enhancement in the performance of these conductors. While the cryogenic stability and quench propagation are fundamental issues for the design and safe operation of superconducting magnets, there is insufficient understanding and experimental data for 2G HTS conductors, in particular for the high field scenario at low temperature (<77 K) where the current sharing regime is much larger than in low temperature superconductors. The present work includes a systematic characterization of the relevant thermal-electrical properties used for both qualitative discussion and numerical analysis. Direct measurements of one dimensional adiabatic quench initiation and propagation of a stabilizer-free 2G conductor have been carried out with spatial-temporal recording of temperature and voltage following the deposition of varying local heat pulses to the conductor at different temperatures between 30 K and 77 K carrying different transport currents. The minimum quench energy, and the heat generation in the minimum propagation zone (MPZ) have been obtained as a function of temperature and transport current. The results show quench features unique to HTS such as an increasing MPZ with transport current and higher quench energies at lower temperatures. The experimental results are discussed in the context of current sharing over a large temperature range

    AANDERAA RCM documentation

    Get PDF

    Gallium arsenide 55Fe X-ray-photovoltaic battery

    Get PDF
    The effects of temperature on the key parameters of a prototype GaAs 55Fe radioisotope X-ray microbattery were studied over the temperature range -20 °C to 70 °C. A p-i-n GaAs structure was used to collect the photons from a 254 Bq 55Fe radioisotope X-ray source. Experimental results showed that the open circuit voltage and the short circuit current decreased with increased temperature. The maximum output power and the conversion efficiency of the device decreased at higher temperatures. For the reported microbattery, the highest maximum output power (1 pW, corresponding to 0.4 μW/Ci) was observed at -20 °C. A conversion efficiency of 9% was measured at -20 °C

    The development of high field magnets utilizing Bi-2212 wind & react insert coils

    No full text
    Wind & react Bi-2212 inserts have been manufactured and tested inside a wide-bore NbTi-Nb3Sn magnet providing a background field up to 20T at 4.2K. A pair of six-layer concentric coils both achieved critical currents of 350 A (JE = 200 A/mm2) in a 20T background field. A thicker 14-layer insert made from 119m of round wire had a critical quench current IQ of 287A (JE = 162 A/mm2) at the same field and contributed to a combined central field of 22.5 T. This is a record for a fully superconducting magnet at 4.2 K. The 14-layer coil, equipped with an external protective shunt, was used for an extensive series of quench measurements and endured >150 quenches without damage. Minimum quench energies were found to be in the range of 200-500mJ in background fields of 15-20T when the coil carried 70-95% of its critical quench current

    Investigation into the effects of transmission-channel fidelity loss in RGBD sensor data for SLAM

    Get PDF
    Simultaneous Location and Mapping (SLAM) is computationally expensive, and requires high-fidelity sensor data. This paper investigates the effects of transmission channel fidelity loss in Red-Green-Blue-Depth (RGBD) sensor data. A mobile robotic platform developed for Explosive Ordinance Disposal (EOD) is used, with a highly constrained data and video link to a base station which computes a SLAM solution. Experiments were conducted offline, using well known data-sets with ground truth data, and their results have been compared to determine the effect of fidelity loss under various multiplexing approaches with a constrained transmission channel

    Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory

    Get PDF
    A primary temperature scale requires realising a unit in terms of its definition. For high temperature radiation thermometry in terms of the International Temperature Scale of 1990 this means extrapolating from the signal measured at the freezing temperature of gold, silver or copper using Planck’s radiation law. The difficulty in doing this means that primary scales above 1000 °C require specialist equipment and careful characterisation in order to achieve the extrapolation with sufficient accuracy. As such, maintenance of the scale at high temperatures is usually only practicable for National Metrology Institutes, and calibration laboratories have to rely on a scale calibrated against transfer standards. At lower temperatures it is practicable for an industrial calibration laboratory to have its own primary temperature scale, which reduces the number of steps between the primary scale and end user. Proposed changes to the SI that will introduce internationally accepted high temperature reference standards might make it practicable to have a primary high temperature scale in a calibration laboratory. In this study such a scale was established by calibrating radiation thermometers directly to high temperature reference standards. The possible reduction in uncertainty to an end user as a result of the reduced calibration chain was evaluated

    Performance of 20:1 multiplexer for large area charge readouts in directional dark matter TPC detectors

    Get PDF
    More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible solution to reducing the overall cost of the charge readout electronics is to multiplex the signal readout channels. Here, we present work on an expanded LMH6574 multiplexer system with a capability of reducing the number of readouts in such TPC detectors by a factor of 20. Results indicate that the important charge distribution asymmetry along an ionization track is retained after multiplexed signals are demultiplexed

    Augmenting forearm crutches with wireless sensors for lower limb rehabilitation

    No full text
    Forearm crutches are frequently used in the rehabilitation of an injury to the lower limb. The recovery rate is improved if the patient correctly applies a certain fraction of their body weight (specified by a clinician) through the axis of the crutch, referred to as partial weight bearing (PWB). Incorrect weight bearing has been shown to result in an extended recovery period or even cause further damage to the limb. There is currently no minimally invasive tool for long-term monitoring of a patient's PWB in a home environment. This paper describes the research and development of an instrumented forearm crutch that has been developed to wirelessly and autonomously monitor a patient's weight bearing over the full period of their recovery, including its potential use in a home environment. A pair of standard forearm crutches are augmented with low-cost off-the-shelf wireless sensor nodes and electronic components to provide indicative measurements of the applied weight, crutch tilt and hand position on the grip. Data are wirelessly transmitted between crutches and to a remote computer (where they are processed and visualized in LabVIEW), and the patient receives biofeedback by means of an audible signal when they put too much or too little weight through the crutch. The initial results obtained highlight the capability of the instrumented crutch to support physiotherapists and patients in monitoring usage

    Monitoring Gearbox Using a Wireless Temperature Node Powered by Thermal Energy Harvesting Module

    Get PDF
    Condition monitoring (CM) of gearbox is a crucial activity due to its importance in power transmission for many industrial applications. Monitoring temperature is an effective mean to collect useful information about the healthy conditions of the gearbox. This study investigates the use of a novel wireless temperature node to monitor and diagnose different faults on a gearbox transmission system under different conditions. The wireless temperature node was fabricated with a novel feature that it is supplied by a thermoelectric generator module mounted on the gearbox house to be monitored so that the measurement system avoids the shortage of using a wired power sources or the requirement for recharging or changing batteries. Moreover, the temperatures from lubricating oils and housing are modelled empirically to implement a model based detection. The results show that this monitoring approach allows a number of common faults: tooth breakage, oil shortage, and shaft misalignment to be separated under different loads, which demonstrates the outstanding performance of the proposed system and thus suitable for online and automated condition monitoring
    corecore