1,761 research outputs found

    Quench characteristics of a stabilizer-free 2G HTS conductor

    No full text
    The prospect of medium/high field superconducting magnets using second generation (2G) HTS tapes is approaching reality with continued enhancement in the performance of these conductors. While the cryogenic stability and quench propagation are fundamental issues for the design and safe operation of superconducting magnets, there is insufficient understanding and experimental data for 2G HTS conductors, in particular for the high field scenario at low temperature (<77 K) where the current sharing regime is much larger than in low temperature superconductors. The present work includes a systematic characterization of the relevant thermal-electrical properties used for both qualitative discussion and numerical analysis. Direct measurements of one dimensional adiabatic quench initiation and propagation of a stabilizer-free 2G conductor have been carried out with spatial-temporal recording of temperature and voltage following the deposition of varying local heat pulses to the conductor at different temperatures between 30 K and 77 K carrying different transport currents. The minimum quench energy, and the heat generation in the minimum propagation zone (MPZ) have been obtained as a function of temperature and transport current. The results show quench features unique to HTS such as an increasing MPZ with transport current and higher quench energies at lower temperatures. The experimental results are discussed in the context of current sharing over a large temperature range

    AANDERAA RCM documentation

    Get PDF

    The role of phosphorylation in the control of Ras activity and localisation in S. cerevisiae

    Get PDF
    Ras proteins are small GTPases that act as molecular switches within cells that link extracellular stimuli to intracellular effectors. Ras proteins play a conserved role in the control of both cell growth and proliferation. As a result, mutations that induce the constitutive activation of Ras proteins are often associated with changes in cell behaviour that can lead to disease, such as human cancer. The localisation of Ras is crucial for its function and this is controlled by post-translational modifications. However, the roles for such modifications in regulating Ras localisation and its activity are poorly understood. We have identified that the phosphorylation of Serine225 of Ras2, a protein that is essential for the control of both growth and proliferation in S. cerevisiae, plays an important role in the regulation of its localisation and activity. Modification of this residue leads to changes in the distribution of GTP-bound Ras2 within the cell. This drives cells towards a novel state of growth cessation that is dependent upon the activity of the cAMP/PKA signalling pathway. We show that this quiescent state is characterised by an uncoupling of cytoplasmic and nuclear process that govern cell growth and division. We suggest that cells can escape growth arrest and re-engage in the cell cycle if the Ras/cAMP/PKA pathway activity is reduced, additional nutritional supplementation is provided or if nutrient uptake processes are elevated. Thus, the Serine225 reside plays an important role in the control of Ras2 localisation and activity that allows the cell to co-ordinate nutritional availability with growth and cell division. My thesis highlights that post-translational modifications in regions outside of the highly conserved Ras GTPase domain may be targeted to change cell fate, for example by switching a pro-growth signalling programme to one that drives a growth cessation. This has implications for the development of novel therapeutic approaches for cancers driven by oncogenic Ras proteins

    Gallium arsenide 55Fe X-ray-photovoltaic battery

    Get PDF
    The effects of temperature on the key parameters of a prototype GaAs 55Fe radioisotope X-ray microbattery were studied over the temperature range -20 °C to 70 °C. A p-i-n GaAs structure was used to collect the photons from a 254 Bq 55Fe radioisotope X-ray source. Experimental results showed that the open circuit voltage and the short circuit current decreased with increased temperature. The maximum output power and the conversion efficiency of the device decreased at higher temperatures. For the reported microbattery, the highest maximum output power (1 pW, corresponding to 0.4 μW/Ci) was observed at -20 °C. A conversion efficiency of 9% was measured at -20 °C

    Evolution of crystalline orientations in the production of ferritic stainless steel

    Get PDF
    Ferritic stainless steel EN 1.4016 is used in a wide range of applications, the most common ones related to sheet forming. Several problems in the post-processing of these steels relates to their texture and anisotropy. Therefore, it is necessary to know the mechanisms of texture formation in the subsequent stages of metal manufacturing processes. EBSD has been demonstrated as a successful characterisation technique for this purpose. It is known that during re-crystallisation of Fe-Cr steels, deviations from the desired.-fibre texture promote a decrease of deep drawability. Additionally, a-fibre damages formability. Subsequent cold rolling and annealing can enhance the deep drawing properties of the steel sheet. In this research, a standard sample and a modified one with optimised settings as regard to chemical composition and manufacturing process, to improve the formability properties, are characterised. To analyse the preferred orientation and the type of main fibre present in the material, ODF and Aztec Reclassify Phase, to calculate the content of martensite, were used

    Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory

    Get PDF
    A primary temperature scale requires realising a unit in terms of its definition. For high temperature radiation thermometry in terms of the International Temperature Scale of 1990 this means extrapolating from the signal measured at the freezing temperature of gold, silver or copper using Planck’s radiation law. The difficulty in doing this means that primary scales above 1000 °C require specialist equipment and careful characterisation in order to achieve the extrapolation with sufficient accuracy. As such, maintenance of the scale at high temperatures is usually only practicable for National Metrology Institutes, and calibration laboratories have to rely on a scale calibrated against transfer standards. At lower temperatures it is practicable for an industrial calibration laboratory to have its own primary temperature scale, which reduces the number of steps between the primary scale and end user. Proposed changes to the SI that will introduce internationally accepted high temperature reference standards might make it practicable to have a primary high temperature scale in a calibration laboratory. In this study such a scale was established by calibrating radiation thermometers directly to high temperature reference standards. The possible reduction in uncertainty to an end user as a result of the reduced calibration chain was evaluated

    The development of high field magnets utilizing Bi-2212 wind & react insert coils

    No full text
    Wind & react Bi-2212 inserts have been manufactured and tested inside a wide-bore NbTi-Nb3Sn magnet providing a background field up to 20T at 4.2K. A pair of six-layer concentric coils both achieved critical currents of 350 A (JE = 200 A/mm2) in a 20T background field. A thicker 14-layer insert made from 119m of round wire had a critical quench current IQ of 287A (JE = 162 A/mm2) at the same field and contributed to a combined central field of 22.5 T. This is a record for a fully superconducting magnet at 4.2 K. The 14-layer coil, equipped with an external protective shunt, was used for an extensive series of quench measurements and endured >150 quenches without damage. Minimum quench energies were found to be in the range of 200-500mJ in background fields of 15-20T when the coil carried 70-95% of its critical quench current

    Investigation into the effects of transmission-channel fidelity loss in RGBD sensor data for SLAM

    Get PDF
    Simultaneous Location and Mapping (SLAM) is computationally expensive, and requires high-fidelity sensor data. This paper investigates the effects of transmission channel fidelity loss in Red-Green-Blue-Depth (RGBD) sensor data. A mobile robotic platform developed for Explosive Ordinance Disposal (EOD) is used, with a highly constrained data and video link to a base station which computes a SLAM solution. Experiments were conducted offline, using well known data-sets with ground truth data, and their results have been compared to determine the effect of fidelity loss under various multiplexing approaches with a constrained transmission channel

    Derivatives--current accounting and auditing literature

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1653/thumbnail.jp
    corecore